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ABSTRACT

Chemometrics is a discipline of chemistry which uses mathematical and sta-

tistical tools to help in the extraction of chemical information from measured data.

With the assistance of chemometric methods, infrared (IR) spectroscopy has become

a widely applied quantitative analysis tool. This dissertation explores two challeng-

ing applications of IR spectroscopy facilitated by chemometric methods: (1) passive

Fourier transform (FT) remote sensing and (2) process monitoring by near-infrared

(NIR) spectroscopy.

Passive FT-IR remote sensing offers a measurement method to detect gaseous

species in the outdoor environment. Two major obstacles limit the application of this

method in quantitative analysis: (1) the effect of both temperature and concentration

on the measured spectral intensities and (2) the difficulty and cost of collecting ref-

erence data for use in calibration. To address these problems, a quantitative analysis

protocol was designed based on the use of a radiance model to develop synthetic cal-

ibration data. The synthetic data served as the input to partial least-squares (PLS)

regression in order to construct models for use in estimating ethanol and methanol

concentrations. The methodology was tested with both laboratory and field remote

sensing data.

Near-infrared spectroscopy has attracted significant interest in process mon-

itoring because of the simplicity in sample preparation and the compatibility with

aqueous solutions. For use in process monitoring, the need exists for robust cali-
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brations. A challenge in the NIR region is that weak, broad and highly overlapped

spectral bands make it difficult to extract useful chemical information from measured

spectra. In this case, signal processing methods can be helpful in removing unwanted

signals and thereby uncovering useful information. When applying signal processing

as a spectral preprocessing tool and regression analysis for building a quantitative

calibration model, optimizing the parameters that specify the details of the methods

is crucial. In this research, particle swarm optimization, a population-based opti-

mization method was applied. Digital filtering and wavelet processing methods were

evaluated for their utility as spectral preprocessing tools.

Both a pump-controlled flowing system and bioreactor runs involving the yeast,

Pichia pastoris, were studied in this work. In investigating the bioreactor runs, insuf-

ficient reference data resulted in difficulties in employing the PLS calibration method.

Instead, the augmented classical least-squares modeling technique was applied since

it requires only pure-component or composite spectra of the analyte and background

matrix rather than a large set of mixture samples of known analyte concentration.
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ing applications of IR spectroscopy facilitated by chemometric methods: (1) passive
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brations. A challenge in the NIR region is that weak, broad and highly overlapped

spectral bands make it difficult to extract useful chemical information from measured

spectra. In this case, signal processing methods can be helpful in removing unwanted

signals and thereby uncovering useful information. When applying signal processing

as a spectral preprocessing tool and regression analysis for building a quantitative

calibration model, optimizing the parameters that specify the details of the methods

is crucial. In this research, particle swarm optimization, a population-based opti-

mization method was applied. Digital filtering and wavelet processing methods were

evaluated for their utility as spectral preprocessing tools.

Both a pump-controlled flowing system and bioreactor runs involving the yeast,

Pichia pastoris, were studied in this work. In investigating the bioreactor runs, insuf-

ficient reference data resulted in difficulties in employing the PLS calibration method.

Instead, the augmented classical least-squares modeling technique was applied since

it requires only pure-component or composite spectra of the analyte and background
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CHAPTER 1
INTRODUCTION

Analytical chemistry is an important branch of chemistry. The accurate and

precise measurement of chemical species is necessary in a variety of settings. Qual-

itative and quantitative examinations of chemical samples have been widely incor-

porated into various fields of chemistry research, as well as clinical, environmental,

pharmaceutical, industrial and forensic applications. With improvements in instru-

mentation and electronics, the available chemical measurement methodologies are

increasingly precise and accurate. With the advent of powerful laboratory computers

and computer-controlled instrumentation, the analyst has the ability to acquire data

in ever increasing amounts. Data can be acquired faster and in quantities that exceed

the capacity of the analyst to perform visual or manual data interpretation. As a

consequence, an important focus of current research efforts is to develop automated

or semi-automated techniques to aid in converting raw experimental data to useful

chemical information.

1.1 Chemometrics

Chemometrics is a subdiscipline of analytical chemistry. In 1974, the Chemomtrics

Society was founded in Seattle, Washington. Chemometrics is defined as the devel-

opment and application of mathematical and statistical methods to help chemists

perform better experimental designs and improve their ability to interpret and ex-

tract useful information (e.g., knowledge of the constitution or reaction mechanism)
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from chemical measurements. A further emphasis is to enable these goals to be ac-

complished rapidly or in an automated manner.

Chemometrics is not the only science which facilitates good experimental pro-

cedures and information extraction. Psychometrics, biometrics and econometrics are

the formal areas of study in psychology, biology and economics that focus on re-

lated goals.1,2 The development of computerized analytical instrumentation has en-

abled the rapid growth of chemometrics. With increasing demands for qualitative

and quantitative analysis tools, chemometrics has been widely incorporated into all

branches of chemistry, especially analytical chemistry. For example, chromatography,

spectroscopy and mass spectrometry methods have all derived benefits from devel-

opments in chemometrics.3 Research in this thesis will focus on the development of

chemometric methods for use with applications of IR spectroscopy.

1.2 Infrared Spectroscopy

Infrared spectroscopy studies the interaction between chemical species and

the electromagnetic spectrum in the IR region. The energy of the radiation in the

IR region can cause molecular vibrational and rotational motions. The motions and

their associated energy levels are determined by the configuration and number of

atoms within a molecule. A nonlinear shaped molecule containing N atoms possesses

3N − 6 fundamental vibrational modes, whereas a linear molecule can vibrate in

3N − 5 modes. Transitions from one level to another occur when there is a change

in the dipole moment during the vibration. Based on this requirement, homonuclear
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diatomic molecules (e.g., N2, O2, H2) are IR inactive.

As a result of the fundamental vibration, a functional group of a molecule

corresponds to a particular radiated energy. The vibrations at different frequencies

can reflect the characteristics and structure of a molecule, thereby creating a signature

of a molecule if the individual frequencies across the IR region are interrogated (i.e.,

a spectrum is recorded).

In addition to the fundamental vibrational modes, the observed spectra also

exhibit overtones and combinations of the corresponding bands. Hence, IR spec-

trometry can be a useful tool in structure investigation and the identification of an

unknown sample. Furthermore, the intensity of the spectral signature is related to

the abundance of the IR-active species in a sample. Therefore, both qualitative and

quantitative analysis can be performed based on an IR spectroscopic measurement.4

1.3 Instrumentation

The most commonly used instrumentation in IR spectroscopy is the Fourier

transform (FT) type. The heart of an FT-IR spectrometer is the interferometer devel-

oped by Michelson in the 1880’s. With the development of computational capabilities

that made possible the routine calculation of the FT, this type of instrument became

popular during the 1970’s. The first commercial FT-IR spectrometer was produced

in this decade.

Compared to the traditional dispersive instrument, there are several advan-

tages that an FT-IR instrument possesses. Instead of a wavelength scan, each in-
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terferometer scan generates an interferogram, which contains the information of the

entire spectrum acquired simultaneously. The scan is fast and offers an excellent

signal-to-noise ratio (SNR). Instead of prisms or diffraction gratings and their as-

sociated entrance and exit slits that limit light throughput, the FT-IR instrument

uses beamsplitters and mirrors in directing the full-size light beam throughout the

optical path. This can help maintain a high light throughput. Meanwhile, the scan-

ning method is capable of high spectral resolution without significant loss of optical

throughput and high wavelength precision.5

However, the primary drawback of the FT-IR instrument is the lack of rugged-

ness associated with the need for moving parts within the interferometer. This may

present challenges in using the instrumentation in harsh or demanding environments

such as a manufacturing plant. A more rugged spectrometer based on an acousto-optic

tunable filter (AOTF) was employed in part of the data collection in this research.

The AOTF is a type of electronic optical filter. The light scanning is performed

based on the acousto-optic effect of the specially cut crystal. In the AOTF instru-

ment, changing a radio frequency input to the crystal can cause a change in refractive

index, thereby allowing light diffraction at different wavelengths.6 A detailed intro-

duction of IR spectroscopy, the associated FT-IR and AOTF instrumentation, and

the related mathematics will be provided in Chapter 2. The specific experimental

setups will be described in Chapters 4 and 5.



5

1.4 Applications

1.4.1 Environmental Monitoring

Air pollution is a serious environmental problem which can cause harm or

discomfort to humans or other living organisms, or cause damage to the natural

environment. Because of human activity (e.g., industrial releases, green house effect)

or natural phenomena (e.g., volcanoes), the primary pollutants include sulfur oxides

(SOx), nitrogen oxides (NOx), carbon dioxide (CO2), carbon monoxide (CO) and

other volatile organic compounds. A great effort has been made to develop fast

and reliable detection of constituents of the atmosphere. Because of the high SNR

and fast-scanning properties of FT instrumentation and the specificity of the mid-IR

region, FT-IR spectrometry has gained popularity in remote gas detection.

Depending on the IR source, the technique of FT-IR remote sensing is divided

into active and passive modes. The active mode has a stable, well controlled instru-

mental light source in the optical path. This approach has been applied to monitor the

pollutant emission rates from coal mines7,8, and generate spectral data on hazardous

air pollutants9–12. Although the light source is stable in the active mode, the greatest

difficulty in remote detection is to couple the light source into the spectrometer. To

make the measurement, the gaseous sample has to be located in the optical path,

i.e., between the light source and the spectrometer. The need for a controlled light

source restricts the flexibility and mobility of the experimental setup. Consequently,

the active mode is only applicable to detection in a fixed location, and not amenable

to a moving scan, e.g., detection from a moving platform such as an aircraft.
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The passive measurement mode has a more practical and simpler instrumental

setup. Instead of a stable IR source, the passive detection views an uncontrolled IR

radiant background. While this setup helps to simplify the instrument, it raises limi-

tations and problems at the same time. First, based on the governing radiance model

of the experiment, it requires a significant temperature difference between the back-

ground and the gas sample. This requirement results in a low sensitivity when the

temperature difference is low. In addition, the naturally occurring background lacks

stability, caused by either temperature changes or changes in the background scene

within the instrumental field-of-view. This translates to difficulties in implementing

the conventional calculation to obtain the analyte absorbance or emission by tak-

ing the ratio of the sample spectrum to a previously acquired background spectrum.

Moreover, the unstable background brings in challenges regarding how to perform

a reliable calibration of the measurement. Third, data collection in remote sensing

measurements is expensive because of the equipment required and logistics associated

with measurements made in the outdoor environment. Especially for toxic gas de-

tection, collecting a large amount of calibration data outdoors is not practical. As a

result, calibration is difficult in passive remote sensing. Strategies to overcome these

calibration difficulties have been investigated. Classification methods by calibration

transfer from either ground or synthetic data to field data collected from the air have

been studied in our laboratory.13,14

In this thesis, a quantitative method is developed based on the mathematical

synthesis of the calibration data by appropriate radiance models. The radiance models
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will be introduced in Chapter 2. Chapter 4 will introduce the detailed protocol and

procedure for the synthetic calibration method.

1.4.2 Process Monitoring

Besides passive remote sensing, process monitoring is also an important field

of application for IR spectroscopy. As a replacement for periodic discrete sampling,

continuous monitoring is more desirable due to increasing demands in industry for

real-time response and quality control. Near-infrared (NIR) spectroscopy has been

investigated in continuous monitoring applications because of the nondestructive na-

ture of the measurement and the ease of sample preparation. In addition, the lower

water absorbance in the NIR region relative to the mid-IR makes it compatible with

aqueous sampling environments. NIR measurements have been in applied in vari-

ous aspects of industrial and pharmaceutical study, including the monitoring of film

coatings,15 blending and its corresponding kinetics,16,17 fermentation processes,18 and

polymer extrusion.19,20

The primary challenge for NIR measurement applications lies in the area of

data analysis and interpretation because the spectral features in this region are rela-

tively broad and weak. The presence of overlapping spectral features makes it difficult

to extract the signal associated with a target analyte from the overlapping spectral

background. Therefore, chemometric techniques are important to enable the genera-

tion of a reliable calibration model for qualitative or quantitative detection. In this

thesis, filter design and wavelet transform methods are investigated as preprocessing
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tools to help extract the analyte signal from the underlying background. Numerical

optimization is a key component of this work because of the need to select the ap-

propriate filter or wavelet design parameters along with the related parameters that

govern the calibration model. In this research, particle swarm optimization (PSO) is

employed. Details about the signal processing and optimization calculations will be

introduced in Chapter 3. The related regression methods for use in building quanti-

tative calibration models will also be discussed in this chapter.

The work on data analysis methodology for use in process monitoring em-

ployed both laboratory simulations of continuous monitoring applications and actual

process data. In Chapter 5, we used a four-component flowing system to investigate

the coupling of PSO, digital filtering, and partial least-squares (PLS) regression. Both

short- and long-term prediction data were studied. The long-term study was valu-

able in testing the stability and reliability of the calibration. To enhance prediction

performance, a model updating approach was also investigated.

With the promising results from Chapter 5, Chapters 6 and 7 move forward

to process monitoring of cell bioreactor runs based on the yeast, Pichia pastoris. The

system is dynamic and complicated due to the cell growth. To obtain a real-time

response, obtaining sufficient reference data for use in model building is impractical.

The dynamic nature of the sample also dictates that a calibration model may not

be transferable from run to run. Therefore, instead of PLS regression, a technique

that requires an extensive set of calibration data, augmented classical least-squares

(ACLS) modeling, was employed.
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The ACLS method depends on knowledge of the chemical system under study

in the form of either pure-component spectra of the sample constituents or composite

spectra that describe the components of the spectral background. If these spectra are

available, the ACLS method can be implemented without a large set of calibration

data of known samples. Lack of reference data is still troublesome, however, because

optimization requires a set of standard data with known analyte concentrations to

drive the search process. A synthesis method is introduced in Chapter 6 to support

the optimization of the calibration models for the bioreactor runs.

Finally, in Chapter 8, overall conclusions are drawn regarding the research

results presented in Chapters 4 - 7. Suggestions are also provided for the direction of

future research based on the current results and methods.
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CHAPTER 2
INFRARED MEASUREMENT TECHNIQUES

This chapter provides an overview of the fundamental principles of Fourier

transform-based infrared instrumentation and the associated raw data processing. A

filter-based spectrometer is also introduced, followed by a review of the basic theory

and radiance models involved in passive remote sensing.

2.1 Introduction to Infrared Spectroscopy

Infrared (IR) spectrometry is one of the most widely applied analysis methods

for molecular species. The IR measurement focuses on a range of characteristic fre-

quencies of light and the molecular absorption, emission or reflection phenomena that

occur at those frequencies. The IR region generally covers from 780 nm to 1000 µm

or in wavenumber, 12,800 to 10 cm−1. Based on the energy and type of vibrational

transitions, the IR region is further subdivided into near-, mid- and far- infrared

regions.

The near-IR (NIR) region spans from 12,800 to 4000 cm−1 (780 nm to 2.5 µm).

Spectral features in this region are composed of broad bands of overtones and combi-

nations of fundamental vibrations of C-H, O-H and N-H bonds in organic functional

groups. Initially, the NIR region was not frequently used because the spectral bands

are weak and overlapped and the spectrum is complex for quantitative analysis. With

the development of instrumentation and data analysis techniques, however, this region

gained increasing interest due to its compatibility with aqueous samples. Nowadays,
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NIR spectroscopy has been successfully applied in agricultural, food, pharmaceutical,

and petroleum industries, as well as in biological and environmental analysis.21

The mid-IR is the most widely used region in the overall IR spectrum. The

mid-IR range covers between 4000 and 200 cm−1 in wavenumber or 2.5 to 50 µm

in wavelength. This region involves the fundamental vibrations of most common

chemical bonds. Because of the high specificity and relatively good sensitivity, it has

been successfully used for identification of organic functional groups and consequently

quanlitative and quantitative analysis of organic compounds. In this thesis, the mid-

IR region is used for the quantitative analysis of gas phase organic compounds (e.g.,

methanol and ethanol) in passive FT-IR remote sensing. This will be introduced in

Chapter 4.

Compared to the near- and mid-IR regions, the far-IR, ranging from 200 to

10 cm−1 (50 to 1000 µm) has historically been limited in application due to a lack of

good light sources and detectors. The region can also provide unique spectral features

in lower frequency, as the fundamental vibrations of organometallic and inorganic

molecules (e.g., metal-ligand compounds) are characterized by heavy atoms and weak

bonds. Additionally, the lattice vibrations of crystalline materials and electron valence

or conduction band transitions in semiconductors also fall in this region.22
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2.2 Fourier Transform Infrared Spectrometry and Raw Data Processing

2.2.1 Michelson Interferometer

The key part of a Fourier transform infrared (FT-IR) spectrometer is the op-

tical component termed an interferometer. Among different types of interferometers,

the double-beam interferometer designed by Michelson in 1891 is the most widely

used in commercial FT-IR spectrometers. Next, an introduction to the Michelson

interferometer is provided.23,24

Figure 2.1 depicts a schematic diagram of a Michelson interferometer. The

radiation from the IR source is divided into two parts by a beamsplitter. One part of

the beam is reflected to the stationary mirror, while the other part transmits through

the beamsplitter to the movable mirror. Ideally, the beamsplitter should reflect half

and transmit half of the incident beam. The divided beams recombine after reflection

back to the beamsplitter by the mirrors. Again, the recombined ray is divided, and

part transmits and part reflects. One beam passes through the sample and reaches

the detector, and the other heads back to the light source. The beamsplitter plays an

important role in dividing the incident light. The coating materials on the beamsplit-

ter should have a high refractive index. The commonly used materials can be KBr,

quartz, ZnSe, ZnS, CaF2, depending on the specific spectral region to be investigated.

With the arrangement of the movable and stationary mirrors, a constructive

or destructive interference between the reflected waves occurs due to the difference in

travel distances. The optical path difference governed by the relative mirror positions

is termed the retardation, δ. If the two waves are in phase, where δ = nλ, n =
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Stationary 
Mirror

Movable Mirror
Beamsplitter

Sample

Detector

Light  Source

Moving 
Direction

Figure 2.1. Schematic of a Michelson interferometer as used in a laboratory FT spec-
trometer. Radiance from the light source is directed to the beamsplitter, producing
separate light beams that are directed to the fixed and movable mirrors. After reflec-
tion, the two beams recombine at the beamsplitter and undergo interference on the
basis of the difference in paths traveled. The resulting light beam is directed through
the sample and onto the detector. The detector signal is recorded as a function of the
position of the moving mirror, resulting in an interferogram. In the remote sensing
research presented in Chapter 4, the sample lies outside of the spectrometer and the
light source is replaced by a set of entrance optics that direct an external source of
radiance into the interferometer.
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0, 1, 2, ..., constructive interference occurs, and a signal twice the amplitude of the

original split beams is obtained (i.e., at an amplitude equal to the original light beam

incident on the beamsplitter). For one-half wavelength out of phase (δ = nλ/2, n =

1, 3, 5, ...), the two beams destructively interfere and cancel out. For phase differences

in between the two extremes, the beams undergo partial interference. A plot of

light output versus retardation is called an interferogram. For a monochromatic light

source, the interferogram can be represented by a cosine wave as5:

I(δ) = B(ν̄) cos(
2πδ

λ
) = B(ν̄) cos(2πν̄δ) (2.1)

where I(δ), a function of the retardation, δ, is the light intensity reaching the detector,

and B(ν̄) is a constant corresponding to the light source, beamsplitter efficiency and

detector response. This term is a function of the wavenumber (ν̄) of the light, which

equals to 1/λ, where λ is the wavelength of the light.

For a broad band continuous or a polychromatic light source, Eq. 2.1 can be

extended to

I(δ) =

∫ +∞

−∞
B(ν̄) cos(2πν̄δ) dν̄ (2.2)

The location where δ = 0 is called the point of zero path difference (ZPD).

At ZPD, all the light frequencies interfere constructively. As a consequence, the in-

terferogram has its maximum intensity at this point. This point is also termed the

centerburst. As the movable mirror moves away from the centerburst, the interfer-
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ogram intensity decays. The wider the bandwidth of the incident light, the faster

the decay. Therefore, an infinitely broadband light source will generate an interfero-

gram with only the centerburst. For a perfect monochromatic light source, an infinite

interferogram can be obtained without any decay.

2.2.2 Fourier Transform

To convert the interferogram from the time domain of the measured cosine

signals to the frequency domain of a spectrum, Fourier transform (FT) is performed

on the interferogram by

B(ν̄) =

∫ +∞

−∞
I(δ) cos(2πν̄δ) dδ (2.3)

Because I(δ) is symmetric about the ZPD, Eq. 2.3 can be rewritten as:

B(ν̄) = 2

∫ +∞

0

I(δ) cos(2πν̄δ) dδ (2.4)

Equations 2.2 and 2.3 are called a Fourier transform pair, which demonstrate

the relationship between the spectral domain single-beam intensity and the interfer-

ogram intensity.

2.2.3 Resolution and Sampling

The relationship in Eq. 2.4 indicates that the mirror must move towards

infinity to obtain an infinite retardation. In practice, however, the movable mirror

can only move for a certain distance. The FT can only apply from 0 to the maximum
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retardation in a finite interval. Therefore, the transformed single-beam spectrum

has a finite resolution. The resolution or the difference between two neighboring

frequencies (∆ν̄) is inversely proportional to the maximum scanned retardation as

∆ν̄ = 1/δmax. To double the resolution, the mirror needs to move twice the original

distance.

A relationship also exists between the spectral resolution and the signal-to-

noise ratio of the measurement. Given that the measurement of each interferogram

point contains both signal and noise, increasing the retardation will increase the total

noise of the interferogram. Given that the spectrum has a finite bandwidth (range of

frequencies), more total noise in the interferogram will lead to more total noise across

the fixed bandwidth. Doubling the length of the interferogram will typically increase

the noise level by a factor of 21/2.

According to the Nyquist sampling theorem, a continuous signal must be sam-

pled at a minimum rate of twice the maximum frequency of the signal. A lower

sampling rate can induce a lower apparent frequency than the true frequency in the

signal. This phenomenon is called aliasing. For a given resolution, ∆ν̄, and maximum

frequency, ν̄max, the required number of points in the interferogram, Ns is

Ns =
2ν̄max

∆ν̄
(2.5)

In the remote sensing project described in Chapter 4, interferograms were

collected under the control of the modulated frequency of a reference He-Ne laser

with a frequency of 15798 cm−1. The laser was directed through the interferometer
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and onto a dedicated detector. The signal from the laser detector was input to a

sampling circuit which coordinated the acquisition of data from the infrared detector.

Interferograms were sampled at every eight zero-crossings of the laser interferogram,

which dictated the maximum frequency according to the requirements of the Nyquist

theorem. Therefore, light frequecies up to 1975 cm−1 (1/8 of the maximum laser

frequency) could be sampled without aliasing.

The choice of sampling rate is dictated by the maximum frequency of the light

source or maximum response frequency of the detector. The choice of 1975 cm−1

was driven by the use of ambient infrared light as the light source in the remote

sensing measurements described in Chapter 4. Essentially no light above 1975 cm−1

is observed from natural sources, and the Hg:Cd:Te (MCT) detector used in this work

had its response range restricted to this wavenumber maximum.

2.2.4 Phase Correction

Theoretically, the collected interferogram should be symmetric with respect

to the ZPD. However, in reality, this case is not guaranteed. The asymmetry is

primarily caused by the phase shift introduced by reflections within the beamsplitter.

Mathematically, this causes the interferogram represented by Eq. 2.2 to contain both

cosine and sine components. Therefore, to correct the shift and restore a symmetric

interferogram, a phase correction process is needed.

Phase correction can be applied to both the interferogram and single-beam

spectrum. In this thesis, the Mertz method was performed in the spectral domain.25–27
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In this method, the cosine and sine components are separated by real and imaginary

parts in the FT, respectively. The complex FT can be written as:

B(ν̄) = Re(ν̄) cos θ(ν̄) + Im(ν̄) sin θ(ν̄) (2.6)

where Re and Im represent the real and imaginary parts in B(ν̄). The term, θ(ν̄), is

the wavenumber-dependent phase error function, defined as:

θ(ν̄) = tan−1
(Im(ν̄)

Re(ν̄)

)
(2.7)

2.2.5 Apodization

As mentioned above, the interferogram can only be collected in a limited

retardation in practice. However, the FT is applied from 0 to infinity as in Eq.

2.4. Therefore, the FT is not applied to the true interferogram, but rather to a signal

equal to the product of the true interferogram and a boxcar sampling function. Given

that the maximum retardation is ∆, the boxcar truncation function can be written

as:

D(δ) =

{
1 if −∆ ≤ δ ≤ +∆
0 if δ > |∆| (2.8)

With the truncation sampling function, Eq. 2.4 can be rewritten as:

B(ν̄) = 2

∫ +∞

0

I(δ)D(δ) cos(2πν̄δ) dδ (2.9)
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Because multiplication of two functions results in a convolution calculation

in the FT, the infinite interferogram function is convolved with the FT of the box-

car truncation function (sinc function of sinx/x). If the original spectral signal is

monochromatic, an infinitely narrow line can be observed after the FT if the true

interferogram has been acquired. However, with the sinc function determining the

characteristics of the spectral band and shape, the resulting FT signal will have ar-

tifacts such as oscillating side-lobes. In this case, the width of a spectral band is the

spectral resolution associated with the measurement. For the boxcar function, the

width at half-maximum height of the observed band is 1.207/∆.

To reduce the artifacts caused by the boxcar function and effectively sample the

interferogram, a triangular-shaped or other sampling function (A(δ)) is often applied

to replace the boxcar truncation function. Rather than sharply transitioning to zero

on the edges, these functions gradually taper to zero, resulting in fewer artifacts when

transformed to the spectral domain. This procedure of multiplying the interferogram

by an artificial sampling function is termed apodization. The triangular apodization

function can be represented as:

A(δ) =

{
1− |δ/∆| if −∆ ≤ δ ≤ +∆
0 if δ > |∆| (2.10)

The corresponding FT of the apodized interferogram is

B(ν̄) = 2

∫ +∞

0

I(δ)A(δ) cos(2πν̄δ) dδ (2.11)
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As noted above, compared to the boxcar function, other apodization functions

can minimize the side-lobe artifacts caused by the boxcar truncation. A price must

be paid in resolution, however. The resolution with the triangular sampling function

will increase to 1.772/∆ while the oscillating artifacts propagating away from the

true spectral frequency are reduced by up to a factor of 5. In the FT calculation in

Chapter 4, triangular apodization was employed.

2.2.6 Advantages of FT-IR Spectrometry

In contrast to traditional dispersive instruments, FT-IR spectrometry offers

several advantages. The multiplex advantage (Fellgett advantage)5,28,29 arises from

the fact that each sampling of the IR detector (i.e., each interferogram point) con-

tains information from all wavelengths in the input light. This qualifies as a multiplex

measurement, defined as a measurement process in which multiple channels of infor-

mation are carried on a single measurement channel. By contrast, in a conventional

dispersive instrument, one measurement point includes information from only one

spectral resolution element. Thus, for a fixed number of samples of the IR detector,

the resolution elements are sampled more often in the FT-IR measurement. Rela-

tive to the dispersive instrument, this translates to either a greater SNR in the same

measurement time or the same SNR in less measurement time. This fast-scanning

capability facilitates the use of signal averaging to reduce the level of random noise

in the spectrum.

The second advantage is termed the Jacquinot advantage,5,28 which is related
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to the high light throughput in the FT-IR instrument. As no slits are used in the

optical path, more light can reach the detector relative to dispersive instruments. If

the measurement is detector-noise limited (i.e., the noise level of the measurement

is driven by the intrinsic noise of the detector), higher light throughput will lead to

higher incident power onto the detector and thus, a higher SNR. This advantage is

limited to some extent since too much incident light may saturate the detector or

cause it to respond nonlinearly. Consequently, for a relatively transparent sample,

the light may need to be attenuated before reaching the detector. However, high

throughput is especially valuable for highly absorbing or scattering samples or in

light-limited measurements such as passive IR remote sensing.

The third advantage is the highly repeatable spectral wavelengths, called

Connes advantage.5,30 With the reference He-Ne laser providing the control of the

sampling of the interferogram, the spectral frequency is directly related to the stabil-

ity of the reference laser.

Meanwhile, FT-IR spectrometry also has potential disadvantages. The setup

of the movable mirror in collecting the interferogram requires a high-precision driving

and alignment system, thereby affecting the ruggedness and portability of the spec-

trometer. A second limitation is termed the “multiplex disadvantage”.29 The mul-

tiplex nature of the FT-IR measurement dictates that if a given resolution element

has a high noise value, this increased noise will “contaminate” each interferogram

point and ultimately be distributed across the entire spectral bandwidth. In this

thesis, the passive remote sensing project employed the FT-IR spectrometer. In the
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NIR monitoring chapters, a filter-based spectrometer experimental set up was inves-

tigated instead. Next, the filter based spectrometer (acousto-optic tunable filter) is

introduced.

2.3 Acousto-Optic Tunable Filter

The acousto-optic tunable filter (AOTF) is an all-solid state electronically

tunable spectral band-pass filter.6,31,32 The principal theory of the AOTF has been

established since the 1920s and the acousto-optic phenomenon was observed in the

1930s for the first time. The AOTF is constructed from a specially cut anisotropic

crystal bonded with an array of acoustic transducers. The anisotropic crystal is

typically quartz or tellurium dioxide (TeO2). The acoustic transducer is made of a

piezoelectric material, by which acoustic waves are generated and launched into the

crystal when a radio-frequency (RF) electrical signal is applied into the transducer.

As the acoustic waves propagate through the crystal, a periodic moving grating is

produced to diffract portions of the incident beam. Figure 2.2 shows a schematic of

the operation of an AOTF.33

The AOTF is compatible in selecting both single wavelength and multiple

wavelengths from the incoming light and choosing from different sources, for example

multi-line sources such as lasers or broadband light sources such as tungsten-halogen

lamps. After a non-polarized light beam passes the crystal, the light beam is split into

three beams, the undiffracted beam, the ordinary beam and the extraordinary beam.

The ordinary and extraordinary beams, which are generated by the acousto-optic
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effect, are orthogonally polarized. If the incident light is an extraordinary ray, it will

be converted into an ordinary ray and spatially separated from the original extraor-

dinary beam by interaction with the acoustic wave propagating in the AOTF. Since

the polarized and the original beam are different in polarization, the corresponding

refractive indices are different. For a fixed acoustic frequency, only a narrow band of

optical frequencies can be diffracted for analytical purposes. Therefore, the spectral

bandpass can be tuned over a large optical region by simply changing the frequency

of the applied radio frequency.

A brief introduction of the working theory of the AOTF is discussed below to

help understand the diffraction process in the crystal.6,31,33–35 The diffraction can be

considered as a transfer of energy and momentum of the electromagnetic wave, and

the energy and the momentum should be conserved. The following equation shows

the conservation of the momentum:

kd = ki ± ks (2.12)

The terms kd, ki, and ks in Eq. 2.12 represent the wave vectors of the diffracted

light, the incident light and the acoustic wave, respectively. The momentum of the

incident and diffracted light can be written as:

|kd| =
2πnd
λ

(2.13)
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|ki| =
2πni
λ

(2.14)

where nd and ni are the refractive indices of the diffracted and incident light, respec-

tively, and λ is the wavelength of light diffracted by the acoustic wave.

If the AOTF is collinear, shown in Figure 2.3, the incident light, the diffracted

light and the acoustic wave are all collinear. As mentioned above, if the incident

light is an extraordinary beam, the diffracted light is an ordinary beam. Then the

conversion of the momentum can be written as

kd = ki − ks (2.15)

|ks| =
2πfs
vs

(2.16)

λ =
vs(ne − no)

fs
(2.17)

In Eq. 2.16, the fs and vs are the frequency and velocity of the sound wave, respec-

tively.

For a non-collinear AOTF, the incident light, the diffracted light and the

acoustic wave are not collinear. The wavelength of light diffracted by the sound wave

is

λ =
vs(ne − no)(sin2θi − sin42θi)

1/2

fs
(2.18)
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Undiffracted BeamIncident Beam

Figure 2.2. Schematic diagram of the operation of an AOTF. An RF signal is launched
into the crystal, inducing a pressure wave that causes a change in refractive index.
The beam is diffracted according to a relationship between the wavelength of the
incident light and the frequency of the RF energy.
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Here the θi is angle of the incident light. If the AOTF is all collinear, the incident

angle is equal to 90◦, then Eq. 2.18 will reduce to Eq. 2.17.

From the equations above, given the frequency of the acoustic wave, only

certain wavelengths of light can be diffracted from the crystal. Therefore, by changing

the electrical signal of the RF applied to the acoustic transducer, the frequency of

the acoustic wave passed through the crystal is altered, and a specific spectrum can

be achieved by the diffraction.

Based on the optical configuration and acoustic wave vectors, there are two

different types of AOTFs, collinear and noncollinear.6 For the collinear AOTF in

Figure 2.3A, the acoustic wave and the incident beam propagate the crystal collinearly

during the acousto-optic interaction, as does the diffracted beam whose polarization is

orthogonal to that of the incident beam. The undiffracted (zero-order diffraction) and

diffracted beams also emerge collinearly from the AOTF. Since the polarization of the

diffracted beam is different, it can be separated from other beams by a polarizer. Since

the interaction length between the incident beam and acoustic wave is relatively long

in this type of filter, crystals that have smaller acoustic figures of merit (e.g. quartz

and MgF2) are often used for collinear type of AOTFs.

However, the noncollinear AOTF is more common since the construction of

the collinear device is sometimes impossible due to the crystal structure. Figure 2.3B

shows the case when the incident, diffracted and acoustic waves are noncollinear.

The acoustic wave diffracts the vertically polarized incident light into a horizontally

polarized beam. The diffracted light can be readily isolated because the transmitted
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Figure 2.3. Two types of AOTF designs. The non-collinear design is the most common
configuration.
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beam is well separated from the diffracted beam. If the incident light is horizontally

polarized, it will be diffracted into a vertically polarized beam. For the non-polarized

incident beam, it will be diffracted into two orthogonally polarized beams, which

propagate in different directions. Designs of this type are constructed from materials

with high acousto-optic figures of merit, such as TeO2.

Hence, the AOTF is similar to the diffraction grating. The grating constant in

this case is the frequency of the acoustic wave introduced into the crystal. One of the

advantages of the AOTF is the frequency of the acoustic wave can be electronically

selected. The wavelength scan rate could be very fast, since the transit time of the

acoustic wave across an optical beam is on the order of microseconds. This translates

to a fast tuning speed of the filter.

Another advantage of the AOTF is the flexibility in the wavelength selection.

The spectral range can be widely selected from the ultraviolet through the visible to

the infrared. The wavelength of diffracted light can be specified by tuning the RF

applied to the crystal (Eqs. 2.17 and 2.18). It also allows multiple wavelengths of

diffraction if more than one RF signal is applied at the same time, which makes it

possible to avoid scanning all wavelengths as in the conventional FT-IR spectrometer.

The AOTF used in this research is a polychromator to provide multiple wavelengths

simultaneously. The width of the filter bandpass is 24 cm−1.

Compared to the conventional FT-IR spectrometer, the AOTF is more rugged

since there is no moving parts. It offers comparable high light throughput with the

FT-IR spectrometer. However, the AOTF has not been widely commercially applied



29

in NIR applications because there are still engineering problems that have not been

fully solved and this technology is not technically mature. Hence, it is still under

development.31,34

Other main components used in the AOTF instrument are similar to those

used with an FT-IR spectrometer. The NIR light source was a tungsten-halogen

lamp. The detector used in this research was a thermoelectrically cooled InGaAs

semiconductor detector.

2.4 Passive Infrared Remote Sensing

Passive infrared remote sensing is a measurement employed with an emission

spectrometer in which a naturally occurring source of IR radiance serves as the light

source. Because natural sources are typically at ambient temperature, the radiant

powers are weak, and the measurement platform is typically a high-throughput FT-

IR spectrometer.36,37

Figure 2.4 depicts the typical experimental setup of the passive measurement.

A target vapor lies within the field-of-view (FOV) of the spectrometer and is observed

against a background scene. Telescope entrance optics are typically employed with

the spectrometer to restrict the FOV and thus allow the measurement to focus on

a specific spatial location. The spectrometer collects the IR radiation emitted from

the background, any emission of light from the target vapor cloud, any atmospheric

emission, and the self-emission from the spectrometer itself.37–39

As a function of wavelength, λ, the radiance (L(λ)) emitted by any surface can
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Target Cloud
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Figure 2.4. Schematic of a passive FT-IR measurement. The sample lies in the
intervening atmosphere between an emission FT-IR spectrometer and a naturally
occurring IR background. Telescope entrance optics are typically placed on the spec-
trometer to restrict its FOV.

be scaled by the radiance from a perfect Planck’s blackbody which is solely dependent

on the temperature of the material:

L(λ) = ε(λ)× L∗(λ, T ) (2.19)

Here, L∗(λ, T ) is the theoretical Planck’s blackbody function and ε(λ) is the emissivity

term, which is defined by the ratio of the radiance from the given body and the perfect

blackbody (ε = 1). Usually, the emissivity is wavelength-dependent and a material

with this property is called a grey body.

The radiance of the gas can be transmitted, absorbed or reflected. The total

power law indicates that the sum of transmittance (τ), emittance(ε) and reflectance(ρ)

equals to unity. With the assumption of no reflectance for gas samples, the emissivity
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can be calculated from the transmittance term by ε(λ) = 1− τ(λ).

As mentioned above, the total IR radiance incident on the sensor is the sum

of radiances from the attenuated parallel layers from the background, target gas

cloud and the intervening atmospheric gases. The total spectral radiance (Lx) can be

expressed as:

Lx = τtτaLbkg + (1− τtτa)Lt (2.20)

where τt and τa denote the transmittance of the target gas cloud and the atmosphere,

respectively. The terms, Lbkg and Lt, are the radiance values of the background and

the target cloud, respectively. Each term in Eq. 2.20 is wavelength dependent. The

first term in Eq. 2.20 can be considered an absorption term where radiance emitted

from the background is attenuated by the atmosphere and target gas. The second

term can be considered an emission term that describes direct IR emission from the

target gas. Note also that the radiance model in Eq. 2.20 assumes there is no direct

radiance from the atmosphere itself. If this assumption were not made, Eq. 2.20

would be extended by adding a radiance contribution from the atmosphere.

Analyte information enters the model through the τ(t) term, as transmittance

is defined as

τt(λ) = exp(−α(λ)cl) (2.21)

where α(λ) is the absorptivity of the analyte molecule at wavelength, λ, c is the
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concentration, and l is the depth of the cloud along the optical path.

The key requirement of the radiance model is that in order for analyte informa-

tion to be obtained in the passive IR measurement, a significant difference must exist

between the temperature of the target cloud (Tt) and the radiant temperature of the

IR background (Tbkg). Assuming the background and target cloud are perfect black-

bodies, both radiance terms in Eq. 2.20 can be represented by the theoretical Planck’s

function values. Accordingly, their radiance is only dependent on temperature. In

this case, if the temperature difference between them is small, for example Tbkg = Tt

at the extreme case, Lbkg = Lt. Then, Eq. 2.20 can be reduced to Lx = Lbkg = Lt.

No analyte information is obtained in this case. Essentially, the rates of absorption

and emission of the analyte are equal.

The measurement thus becomes challenging as Tbkg approaches Tt. Another

challenging case occurs when the concentration of the detected gas is low, or the cloud

depth is small. In these cases, the value of τt is close to unity and the transmittance

term has little impact on the measured radiance. A final consideration is that in

passive remote sensing, depending on the temperature relationship noted above , the

observed IR spectral features of the target gas could be either emission (Tt > Tbkg)

or absorption (Tt < Tbkg). Applications of this radiance model in gas detection will

be discussed in Chapter 4.
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CHAPTER 3
SIGNAL PROCESSING AND DATA ANALYSIS

In IR spectroscopy, data preprocessing is a necessary procedure because of the

potential instability of the spectral background, interference from non-analyte species

present in the sample, and the occurrence of measurement noise and spectrometer

drift. The relatively weak absorptivities in the infrared region dictate that the spectral

signal-to-noise ratio (SNR) will always be a concern and that spectral artifacts such

as baseline variation will be more prominent than in other spectral regions were the

analyte signals are larger.

Signal processing methods such as digital filtering and wavelet analysis are

frequently used to eliminate extraneous spectral signals, thereby helping to uncover

useful information related to the target analyte under study. In this chapter, a general

review of signal processing techniques is provided.

In the quantitative analysis of IR spectra, after the data preprocessing step, a

calibration model is built to allow the estimation of analyte concentration. Because of

the common occurrence of spectral overlap, few real-world multicomponent samples

can be quantified by use of measurements at a single wavelength. Thus, full spectra

are collected and usually a multivariate statistical regression is performed to build

the calibration model. The regression model can be based on partial least-squares

(PLS), classical least-squares (CLS), or a variety of other related methods. The

mathematics and statistics related to these regression methods will also be introduced

in this chapter.
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Additionally, in both signal processing and multivariate regression, parameter

optimization is always required to help select the optimal parameter combinations

that define the specifics of the method. In this study, particle swarm optimization

(PSO) was investigated for its use in controlling and optimizing parameter selection.

The optimization procedure of this method will also be discussed in this chapter.

3.1 Signal Processing

For all instrumental measurements, interference signals commonly exist and

are superimposed on the analyte signal. These interference signals include signals

from instrumental noise, baseline drift, and intensity changes due to variation in the

light source or the detector response. It is desirable to eliminate these unwanted

signals before further quantitative analysis is performed.

Instrumental noise can be reduced by spectral co-addition or using a smooth-

ing digital filter. Adding a linear or nonlinear trend in the model can help correct the

baseline drift. These effects can also be minimized through the computation of ab-

sorbance spectra, based on taking the ratio of sample and background spectra. This

procedure is effective only if the background spectrum carries the same information

as in the sample spectrum regarding the artifact to be removed. Only in this case

will the artifact be removed through the spectral ratio. In this section, two data pre-

processing techniques used in this dissertation, digital filtering and wavelet analysis,

will be introduced.
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3.1.1 Digital Filtering

The principle of digital filtering is to separate components of a measured signal

on the basis of the underlying frequency components that comprise it. Here, the

term, frequency component, does not refer to a spectral frequency, but rather to

the frequency of a sine or cosine waveform used to model the input data. When

applied to IR data, the typical purpose of digital filtering is to remove unwanted

signals and thereby help to extract the information regarding the analyte of interest.

The implementation of this approach is based on the assumption that the analyte

and the non-analyte information can be decomposed into their underlying harmonic

frequencies.

Depending on the selected range of signal frequencies, the digital filter design

can be lowpass, highpass, bandpass or bandstop.40–42 Digital filtering can be per-

formed on both the interferogram obtained from an FT-IR measurement as well as

the corresponding spectrum.43–46 In this dissertation, digital filtering in the spectral

domain was investigated.

As noted above, the spectral signal can be considered as a series of sine and

cosine waveforms with varied phases and frequencies superimposed on each other.

Lower sine and cosine frequencies model components of the spectrum that vary slowly.

Normally, this frequency region is dominated by background information, baseline

variation, or instrumental drift effects. Higher frequency sines and cosines represent

rapidly changing spectral features, for example fast-varying random noise. Therefore,

a lowpass filter which passes low frequencies while attenuating higher frequencies



36

could suppress random noise and a highpass filter could remove broad features such

as baseline variation by attenuating the lower frequency information while passing

information at high frequencies. A bandpass filter could potentially extract specific

analyte frequency components while eliminating both baseline variation and spectral

noise. A bandstop filter can be used to suppress the signal at a specific frequency

while passing all other frequencies.. This type of filter is similar to a notch filter

usually used in Raman spectrometry.

The profile of the action of a filter on the basis of frequency is termed its

frequency response function. A frequency response function plots a measure of the

transmission or attenuation of the filter as a function of frequency. The frequency

scale is typically presented in a dimensionless form, varying from 0.0 to 1.0, where 1.0

defines the maximum harmonic frequency of the data as determined by the sampling

rate and the Nyquist theorem (see section 2.3 in Chapter 2).

The frequency response is divided into groups of three regions, termed pass-

bands, stopbands, and transition bands. A passband defines a range of frequencies

the filter will pass, while a stopband specifies a range of frequencies that will be sup-

pressed. The transition band lies between the passband and stopband. It specifies

a region in which the frequency response is allowed to undergo a transition between

the passband and stopband. In this range of frequencies, partial suppression of the

signal will occur. Lowpass and highpass filters have one passband, one stopband,

and one transition band. A bandpass filter will typically have a single passband with

stopbands and transition bands on each side.
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Digital filter design begins with the specification of the target frequency re-

sponse. This can be non-trivial because the spectral features, analyte or non-analyte,

are not distributed clearly into different frequency ranges. Therefore, it is difficult to

draw a sharp line between them. Attenuating an unwanted signal will always cause

some loss of the analyte signal.

Because the frequency response pertains to the underlying harmonic compo-

nents of the input data, it cannot be used directly to accomplish the filtering step.

From the standpoint of the Fourier transform (FT), the frequency response exists in

the frequency domain, while the input spectrum exists in the time domain. In this

regard, the spectrum is envisioned as a signal that is sampled vs. time. To operate on

the spectrum, a representation of the frequency response in the time domain must be

obtained. This is termed the impulse response of the filter. Given an input frequency

response function, digital filter design methods estimate the corresponding impulse

response. The filter is then applied by computing the convolution of the impulse

response with the measured spectrum. The output of this calculation is a filtered

spectrum.

When employing digital data, the input signal is composed of discrete points

that have been sampled. Therefore, in using the filter, the signal is operated on point-

by-point from beginning to end to approximate the convolution of the data with the

impulse response of the filter. Depending on how the convolution is estimated, digital

filters are categorized into finite impulse response (FIR) and infinite impulse response

(IIR) filters.40,47 The factor that differentiates these two types of filters is how the
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feedback of the previous point in the data sequence is manipulated. An FIR filter

only uses the point from the input signal, while the IIR filter includes the filtered

output of previous points when calculating the filtered value corresponding to the

current point. The different operations can be represented by the equations shown

below:

yn = a0xn + a1xn−1 + a2xn−2 + ...+ aNxn−N (3.1)

yn = a0xn + a1xn−1 + a2xn−2 + ...+ aNxn−N
−b1yn−1 − b2yn−2 − ...− bMyn−M

(3.2)

The terms in Eqs. 3.1 and 3.2 show how the FIR and IIR filters treat an input

signal. In these equations, yn denotes the filtered discrete signal at point n and the

xi are points in the original input signal at point n and before. The values of a and b

are the filter coefficients (i.e., points comprising the impulse response) obtained from

the filter design. It can be seen in Eq. 3.1 that an FIR filter employee the current

data point and the raw data points located before it. In Eq. 3.2, the IIR filter also

includes the filtered signal from points prior to the current point.

The number of filter coefficients, N and M , in Eqs. 3.1 and 3.2 dictate what is

termed the filter order. Specifically, the order is N for an FIR filter and the maximum

of N and M for an IIR filter. As seen from an inspection of the equations, the filter

order determines the computational demands of the filtering step. The purpose of

filter design is to compute an impulse response whose action approximates the target
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frequency response as closely as possible while doing so with as low a filter order as

possible.

In using an FIR design to obtain a narrow bandpass filter with a high degree

of stopband attenuation, a high filter order is typically required, resulting in an in-

efficient calculation. The IIR design, because it takes advantage of the previously

filtered points, generally needs fewer coefficients than FIR filters to achieve a similar

performance. This results in computational savings when the filter is applied. An IIR

filter will also typically allow a narrower transition band, thus resulting in a sharper

rolloff between the passband and stopband.

To take advantage of the properties noted above, the digital filtering work

described in this dissertation employed IIR filters. The most widely used IIR filters are

based on the Butterworth, Chebyshev type I and II, and Elliptic design methods.48,49

The Chebyshev type II design was used in this work. This filter design has a fast rolloff

between the stopband and the passband which offers good flexibility in frequency

selection.50

3.1.2 Wavelet Transform

Wavelet analysis is based on a similar transform method to the FT.51,52 In the

FT, a signal is decomposed into sine and cosine waves of different frequencies, while

the transformation is between the time domain and the frequency domain. Fourier

analysis is generally very useful because the frequency components of a signal are

often very useful in characterizing it. One of the limitations of the FT, however, is
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that it is based on the assumption that the time base of all the frequency components

is the same. Stated differently, the FT assumes that underlying harmonic frequencies

are present throughout the sampled signal. There is no consideration that a given

frequency may appear at some point after the sampling of the signal has begun. In

effect, time information is lost, and one cannot obtain information about when a

particular event occurs.

A key limitation of the FT is that the basis functions used in constructing

the model for the input data (i.e., the sine and cosine waveforms) are infinitely long

functions. By contrast, wavelet analysis is based on modeling an input signal with

harmonic functions (i.e., wavelets) that are limited in time (i.e., have a starting and

stopping point). The wavelet model is able to accomplish both time and frequency

estimation. In the terminology of the field, the wavelet transform is able to provide

a multi-resolution analysis of the input data.53–56

In the wavelet transform, a wavelet function is used to decompose an input

signal by moving the wavelet window along the signal. Wavelet functions are more

flexible in terms of shape and length than the sine and cosine functions used as the

basis for the FT. To obtain precise low-frequency information, a longer window is

needed. Correspondingly, a shorter window is desired if high-frequency components

are of interest.

The wavelet transform can provide both global and detailed views of the input

signal. This flexibility can be achieved by shifting the window in the time variable and

dilation of the wavelet on the frequency variable by alteration of a template function
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called the “mother wavelet”. The mother wavelet describes a family of functions that

are specified by the family name and an order parameter. Figure 3.1 displays wavelet

functions in different orders from Symlet family.

A mother wavelet (Ψ(λ)) must belong to the absolutely squared integral func-

tion space L2 and meet the admissibility condition as:

∫ +∞

−∞

|=(Ψ(λ))|2

ω
dω <∞ (3.3)

In the equation above, = denotes the FT and ω is the radial frequency in the Fourier

domain. A mother wavelet function must oscillate and have an average value of zero.

It also needs to meet the requirement of exponential decay and be dually located in

both time and frequency domains. Depending on the interested frequency region, a

mother wavelet can be shifted or dilated by

Ψa,b(t) =
1√
|a|

Ψ(
t− b
a

) (3.4)

In Eq. 3.4, a and b are the variables to control frequency dilation and time shifting,

respectively. The term 1/
√
|a| is a normalizing constant to ensure the magnitude

of the wavelet function is unity. Then, for a continuous signal f(t), the wavelet

transform is defined as:

Wf (a, b) =
1√
|a|

∫ +∞

−∞
Ψ(
t− b
a

)f(t) dt (3.5)

Similar to the FT, all signals used are digital data sampled at discrete points.
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Figure 3.1. Wavelet functions with different orders from the Symlet mother wavelet.
The subfigure caption shows the corresponding order of the function. The shapes of
the function are different with different orders.
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The discrete forms of Eqs. 3.4 and 3.5 are

Ψm,n(t) = a
−m/2
0 Ψ(a−m0 t− nb0) (3.6)

Cm,n(f) =

∫ +∞

−∞
Ψm,n(t)f(t) dt (3.7)

In Eq. 3.6, m and n are analogous to a and b in Eq. 3.4 and are used to scale

the dilation and time shift. Usually, a0 = 2 and b0 = 1 in this equation and the

function is called dyadic. But with Eq. 3.7, it is still difficult to calculate the wavelet

transform. The discrete dyadic wavelet transform, in which Ψm,n plays a role in

the form of discrete filters, can decompose the given signal f(t) into highpass and

lowpass components through the impulse response functions, G and H. Functions G

and H are the impulse responses of highpass and lowpass filters, respectively. The

corresponding wavelet coefficients can be calculated by:

A2j+1f(n) =
L−1∑
l=0

H(l)A2jf(n− 2jl) (3.8)

D2j+1f(n) =
L−1∑
l=0

G(m)A2jf(n− 2jm) (3.9)

The terms, A and D, are termed the approximation and details coefficients, which

represent the low- and high- pass parts respectively. To perform the discrete wavelet

transform (DWT), the signal must be of length 2n. Each decomposition step generates
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the approximation and details coefficients, whose lengths are equal to 1/2 of the

decomposed signal. Symmetric extension or zero-filling can be used to extend the

input signal to the nearest power of two.

When applied in signal processing, the wavelet decomposition can be per-

formed iteratively for several steps on both the obtained approximation and details

components depending on the purpose of the study. An n-level decomposition can be

represented by a wavelet decomposition tree as in Figure 3.2A. In this dissertation,

the details component obtained from the first level of decomposition was considered

to be dominated by noise and was not decomposed further. The decomposition em-

ployed here can be depicted by the modified wavelet decomposition tree in Figure

3.2B.

After each level of decomposition, the length of the coefficients is reduced

by a factor of two as mentioned previously. This will cause loss of time resolution.

The term, time resolution, is used here in the context of wavelet theory but it is

essentially spectral resolution in the context of the input signal used in this work. In

our application, the use of the DWT is based on the following assumptions. First, the

broad and fine (narrow) spectral features can be separated into the approximation

and details coefficients, respectively. Second, all information in the original signal

is represented by the collective set of wavelet coefficients. Third, the signal can

be reconstructed to the same time (spectral) resolution as in the original signal by

reversing the decomposition.

It is possible to reconstruct the approximations and details themselves to the
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original resolution by use of the obtained wavelet coefficients. For instance, recon-

struction using approximation Ai yields the signal ai by filling the details coefficients

with zeros. Similarly, details Di can reconstruct the signal, di. If all levels of the coef-

ficient vectors, including Ai, D1, D2, ..., Di are used in the reconstruction, the original

signal is obtained.

As implemented in the research described here, an input NIR spectrum is

decomposed into multiple levels as shown in Figure 3.2B and then reconstructed

selectively. By selecting or eliminating different levels of approximation or details

coefficients, it is possible to obtain the reconstructed signal with analyte information

enhanced and unwanted noise or background information eliminated. Here, the last

approximation obtained in Figure 3.2B is assumed to be dominated by background

information and is not included in the reconstruction. Instead, numerical optimization

is used to identify which of the details to include in the reconstruction in order to

provide the best suppression of unneeded spectral information. The reconstructed

spectrum can then be used for quantitative analysis.

This procedure is analogous to digital filtering implemented through use of the

FT (termed Fourier filtering). In Fourier filtering, the input signal is first converted

into the frequency (Fourier) domain by application of the FT. Some of the frequencies

can then be attenuated by multiplying the Fourier domain spectrum by the desired

frequency response function of the filter. If the resulting signal is returned to the

original domain by application of the inverse FT, a filtered spectrum results in which

some of the underlying components have been removed. The filtered spectrum can
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then be used for further data analysis.

For completeness, it should be noted that the Fourier filtering procedure de-

scribed above is analogous to the digital filtering methodology described previously

in section 3.1.1. The multiplication of the Fourier domain spectrum by the frequency

response function performed in Fourier filtering is equivalent to the convolution of

the impulse response of the filter and the original NIR spectrum. This equivalence is

termed the convolution theorem of the FT.

There are several families of wavelets that are especially useful in signal pro-

cessing, For example, the Haar, Daubechies, Symlets and Meyer wavelet functions

have been widely used.55,57–59 Figure 3.3 depicts the shapes of the mother wavelets

that define the wavelet functions employed in this work. Wavelet shapes within one

family are different if in different orders as illustrated previously in Figure 3.1.

In summary, the wavelet decomposition/reconstruction process was employed

here as an alternative to digital filtering for use in suppressing unwanted spectral

information. The key attribute of wavelet analysis is the greater flexibility in the se-

lection of the basis functions used in performing the spectral decomposition. Whereas

digital filtering is entirely based on the use of sine and cosine functions, wavelet anal-

ysis provides a much greater selection of functions. In the dissertation research, it

was hypothesized that this greater flexibility in controlling the decomposition would

provide a more refined capability to extract analyte information from the measured

NIR spectra.
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(A) Decomposition of both approximations and details
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A4 D4

(B) Decomposition of obtained approximations

Figure 3.2. Two types of decomposition trees of signals in wavelet analysis.
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Figure 3.3. Representation of wavelet functions from different families. The caption
in the subfigure shows the wavelet family.
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3.2 Calibration Applications

The ultimate goal of analytical chemistry is to use the recorded signal to obtain

qualitative and quantitative information regarding an analyte of interest. Examples

of such information are determining the presence or absence of a particular chemical

species or the amount of a species present in a sample.

To obtain knowledge regarding the concentration of an analyte, a calibration

model is typically required to generate the mathematical relationship that correlates

the measured signals (e.g., NIR spectra) with the parameter of interest (e.g., con-

centration). Calibration models can be classified as univariate or multivariate based

on the dimensionality of the data input to the model. The univariate model is the

simplest form, which involves relating a single measurement (e.g., the absorbance

intensity at a single wavelength) with the target property of interest such as concen-

tration. Two or more measurements are required to build a multivariate calibration

model.

Multivariate calibration is widely used in current applications because of the

increased power of laboratory computers, and the capabilities for rapid and large data

acquisitions. Multivariate models provide increased capabilities to perform successful

calibrations in complex chemical systems where there is no single measurement chan-

nel (e.g., wavelength) that provides a selective signal for the analyte. In this research,

the spectral data used in calibration and prediction are all composed of multiple mea-

surements across a given spectral bandwidth. The specific modeling techniques used

in the dissertation research are described below.
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3.2.1 Classical Least-Squares

Classical least-squares (CLS) analysis3,60,61 is a multivariate calibration method

based on the use of multiple linear regression (MLR) to establish the relationship be-

tween measured responses and analyte concentration. In an absorption spectroscopy

application, the basic approach is to fit a measured absorbance spectrum to a model

that assumes the linear additivity of a series of underlying spectral components. Here,

the absorbance values in the measured spectrum across a given spectral bandwidth

define the dependent variable for the fit, while the values in the known component

spectra across the same bandwidth comprise the independent variables. The model is

set up such that the regression coefficients obtained from the fit express the amount

of each of the independent variables that are required to add together to produce the

measured spectrum. One can envision that if the pure-component spectrum of the

analyte is included as one of the independent variables, the regression coefficient for

that term in the model will be related to the analyte concentration.

According to the Beer-Lambert law, the concentration (c) is directly propor-

tional to the absorbance (A) as shown in Eq. 3.10, where ε is the molar absorptivity

and b represents the pathlength. Absorbance and absorptivity are functions of wave-

length. Assuming the absorbance of multiple components at a given wavelength is

linearly additive, the Beer-Lambert law relation is shown in Eq. 3.11, in which Ai

denotes the total absorbance at wavelength i, εij is the absorptivity of component j

at wavelength i, cj is the concentration of the jth component (l components in total

in the mixture), and kij is defined as the product of εij and b.
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A = εbc (3.10)

Ai =
l∑

j=1

εijbcj =
l∑

j=1

kijcj (3.11)

For a multi-wavelength and multi-component case, Eq. 3.11 can be written in

a matrix form as

A = KC + E (3.12)

where A is a p × n matrix constructed with the measured spectroscopic absorbance

spectra of the n samples at p wavelengths each and C is the h × n concentration

matrix with h components in the n samples. If the wavelengths are continuous and

evenly spaced, K is a p × h matrix with the pure-component spectra of the sample

constituents multiplied by the pathlength in each column. This matrix is sometimes

called the sensitivity matrix. The matrix of residual spectra, E (p × n), contains

the part of the measured absorbance spectra in A that cannot be explained by the

model. Thus, E contains either random noise or the spectral features of unmodeled

components (i.e., spectra that are not included in K).

With the knowledge of the components and their pure-component spectra, the

concentrations of the components can be estimated by performing MLR analysis as

described above. The least-squares solution is
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Ĉ = (K′K)−1K′A (3.13)

The prime symbols in Eq. 3.13 indicate the transpose of the matrix and the hat

symbol on the matrix, C, denotes that the values are estimated rather than actual.

Estimating the concentrations through this procedure is called CLS calibration.

For the case when the pure-component spectrum of each component of the

sample is not available, the sensitivity matrix, K, in Eq. 3.12 can be estimated from

the spectra of a set of mixture samples with known compositions. The number of

spectra (n) used for this calculation needs to be three to five times larger than the

total number of components (h) in estimating the K matrix. If the matrix (CC′) is

not singular, the estimation of K in Eq. 3.12 by least-squares is:

K̂ = AC′(C′C)−1 (3.14)

When predicting the concentrations of unknown samples, the K term in Eq.

3.13 is replaced by K̂ in Eq. 3.14. Normally the error of K̂ cannot be considered

negligible because it is estimated from A and C. The estimated concentrations in

this case are:

Ĉ = (K̂′K̂)−1K̂′A (3.15)

In evaluating the quality of the calibration, the root-mean-squared error of

calibration (RMSEC) error or standard error of calibration (SEC) for species j is
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demonstrated as

SECj =

√∑n
i=1(cj,i − ĉj,i)2

n− h
(3.16)

This equation assumes that n spectra have been used to estimate K, followed by use

of K̂ to estimate C from the same samples. The n − h term in the denominator of

Eq. 3.16 reflects the loss of degrees of freedom in the error estimate caused by using

the same spectra to estimate K that are in turn used in the estimation of SEC.

When the model is used to predict the concentration of m known samples that

were not used in estimating K, the concentration error is computed as the standard

error of prediction (SEP) or root-mean-squared error of prediction (RMSEP). The

SEP can be obtained by

SEPj =

√∑m
i=1(cj,i − ĉj,i)2

m
(3.17)

Here, there is no loss of degrees of freedom in determining the error estimate since

the m spectra used to determine the SEP were not used in estimating K.

The crucial factor of using CLS successfully is to implement a calibration in

which the K or K̂ can be formulated accurately with respect to the composition of the

samples to which the model will be applied. However, for complicated samples, (e.g.,

in environmental or biological systems), it is difficult, if not impossible, to establish all

of the contributors to the overall response. In this case, the CLS method is limited in

application either because of insufficient knowledge of all components or errors in the
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concentration estimates used in generating K̂ . The latter case is especially significant

when instrumental measurements are used to obtain the reference concentrations.

If the precision of the spectral intensities is better than that of the concentration

measurements, the formulation of the least-squares model in Eq. 3.15 is technically

invalid because the independent variables now have greater error than the dependent

variable.

To address the limitations noted above, Haaland and coworkers have devel-

oped a series of strategies to add flexibility to the CLS model.62–65 Termed augmented

CLS (ACLS), the concept is to expand K in Eq. 3.13 to include additional “spectral

shapes” that do not technically correspond to pure-component spectra of chemical

constituents of the sample. For example, if baseline variation typically exists in the

measured spectra due to instrumental drift effects, the shapes of baseline components

can be added as additional spectra in K to form a new augmented K, Ka. When the

least-squares fit in Eq. 3.13 is performed, the contribution of the baseline component

to the measured absorbance spectrum is then taken into account, resulting in more

accurate concentration estimates for the actual chemical components. Stated differ-

ently, the least-squares model now no longer has to adjust the regression coefficients

(concentration estimates) of the chemical components to account for the baseline con-

tribution to the measured spectrum. Other approaches can be used to augment K,

including composite spectra to describe components of the sample matrix that do

not change or change together from sample to sample. The ACLS method is used in

Chapters 6 and 7. The specific implementation used in the dissertation research will
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be discussed there.

3.3 Multiple Linear Regression Models

To handle the case in which the full matrix of sample components cannot

be specified accurately, an inverse regression model can be employed in which the

concentration becomes the dependent variable (“y”) and the measured spectral in-

tensities define the independent variables (“x”). Then, with the knowledge of the

measured spectral intensities and concentrations of a set of calibration samples, the

concentration is modeled as a function of the measured instrumental responses by

MLR. This is also called an inverse calibration method.3,61,66,67

In a multivariate inverse calibration model, for a component in a sample,

the concentration of the analyte of interest can be modeled as a function of the

spectroscopic intensities at multiple wavelengths as:

ci = b0 + b1x1,i + b2x2,i + ...+ bpxp,i + ei (3.18)

where ci is the concentration of the analyte of interest in sample i, x1,i, x2,i, ..., xp,i

represent the spectral intensities from p wavelengths, and b0, b1, b2, ..., bp, are the

regression coefficients returned by MLR. The p wavelengths could be selected from a

total of m depending on a wavelength selection procedure. For a series of measured

concentrations of h components and their corresponding instrumental responses, Eq.

3.18 can be written in matrix form as
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C = XB (3.19)

where C is an n×h matrix which records the concentrations of h components from n

samples, X represents the n×p matrix with the spectral intensities from p wavelength,

and B (p×h) is the regression coefficient matrix. The B matrix can be estimated by

the generalized inverse:

B = (X′X)−1X′C (3.20)

Given B, predicted concentrations in new samples with spectra in A can be estimated

by

Ĉ = AB (3.21)

Standard errors in the predicted concentrations are then estimated by Eq. 3.16

for the calibration samples and Eq. 3.17 for samples not included in the calibration

matrix of data used to compute B. The denominator in Eq. 3.16 is changed to

(n − p − 1) in this case to reflect the correct number of degrees of freedom (p + 1

model terms in Eq. 3.18).

As in the case discussed previously for estimating K in the CLS method,

n must be sufficiently larger than p to allow the precise determination of B. The

American Society of Testing and Materials (ASTM) standard is (n > 6p).68 For

example, if the spectral scan is from 4800 to 4200 cm−1 with a 4 cm−1 point spacing,
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there are 151 responses in each spectrum. By the ASTM standard, 6 × 151 = 906

samples are thus required to build the calibration model in this case. This number

of samples is not practical in most applications. Therefore, wavelength selection

methods must be applied to identify the key spectral points for use in building the

calibration model. Unfortunately, because of the large amount of spectral overlap

that often occurs in mixture samples, it can be difficult to identify a small subset of

wavelengths that will build an adequate calibration model.

Another consideration in this calibration method is the condition of X′X in

Eq. 3.20. The inverse of X′X is required to calculate the regression coefficients. If

the columns or rows are linearly dependent, the X matrix is singular or nearly so

and thus poorly conditioned for the inverse calculation. Unfortunately, such collinear

relationships are common with spectroscopic data where multiple spectral points typ-

ically are acquired across each spectral band. This factor, coupled with the difficulty

of identifying small subsets of wavelengths that will adequately model the concen-

trations, has led this calibration method to be replaced with a modified approach

described in the next section.

3.4 Latent Variable Methods

The idea of latent variable methods is to compute a new set of independent

variables (orthogonal to each other) which are linear combinations of the original

responses. An inverse regression model of the type described in Eq. 3.18 is then built

to relate concentrations to the new responses obtained from the latent variables. The
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goal of this approach is to extract the key spectral information in fewer points than

the raw data. This allows the calibration model to be built with fewer terms and

thus satisfy the ASTM standard with fewer calibration samples. Furthermore, since

the latent variables are orthogonal, there are no issues with the inversion of X′X.3,61

After obataining the latent variables, the following relationship can be ob-

tained:

T = RS (3.22)

In Eq. 3.22, R is the n × p matrix of original measured data, S (p × h) represents

the h latent variables computed from the data, and T is an n × h matrix of scores.

The columns of S have the same dimensionality as the original spectra and are called

factors or loadings. The loadings can be considered basis vectors in an h-dimensional

coordinate system, while the scores represent the projections (coordinates) of the

original spectra onto this new basis.

With the h-dimensional score vector corresponding to each input spectrum,

the calibration model can be built in a manner analogous to Eq. 3.18. The computed

scores are used as the new independent variables.

ci = b0 + b1t1 + b2t2 + ...+ bhth (3.23)

The key to the success of latent variable methods is the calculation of the

loadings such that the corresponding scores efficiently represent the key spectral in-
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formation needed to build an effective calibration model. The two most common

approaches to this calculation are described below.

3.4.1 Principal Component Regression

Principal component regression (PCR) is simply principal component analysis

(PCA) followed by an MLR step.3,61 The goal of PCA is to factorize the response

matrix into h factors as shown below:

R = TV′ + E (3.24)

In Eq. 3.24, R is the response matrix with n spectra in the rows and p wave-

lengths, T is the score matrix with dimensionality of n × h, V is a p × h matrix

with h orthonormal loadings in the columns, and E is the matrix of residual spec-

tra that contains the unmodeled portion of R. The loading matrix, V, contains h

of the p eigenvectors of R′R. The eigenvectors can be obtained through singular

value decomposition (SVD) or the nonlinear iterative partial least-squares (NIPALS)

algorithm.69,70

Each loading, called a principal component (PC), has an associated eigenvalue

that is proportional to the magnitude of the loading vector before normalization. The

loading with the largest eigenvalue projects most strongly onto R and is called the

first principal component. Because the loadings are orthogonal, each projects onto

(i.e., accounts for) a unique portion of the information in R. By taking the loadings

corresponding to the h largest eigenvalues, an h-dimensional basis is obtained that
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can most efficiently represent the information in R.

The score matrix is computed from R and V. For eigenvector i, the corre-

sponding score vector is

ti = Rvi (3.25)

Since V is an orthogonal matrix, the calculated score vectors are also orthogonal.

Thus, assuming there is significant collinearity present in R, the scores offer an ability

to represent the key information in R while requiring fewer variables to do so. This

leads to a calibration model with fewer terms (Eq. 3.23).

In building the calibration model in PCR, Eq. 3.19 is employed by replacing

X with the score matrix, T. For a single analyte, the regression coefficient vector, b,

can be computed by substituting X with T in Eq. 3.20, where c in Eq. 3.26 is the

vector of reference concentrations for the calibration samples.

b = (T′T)−1Tc (3.26)

Once the regression coefficients have been computed by use of Eq. 3.26, a

calibration model is obtained that can be used with future samples. For a concen-

tration to be predicted, the recorded spectrum is used together with the V matrix

computed from the calibration data. This allows Eq. 3.25 to be used to compute the

corresponding score vector. The predicted concentrations are then computed by Eq.

3.23.
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The PCR method is based on the assumption that the major sources of vari-

ance in R arise from the instrumental signals and that the measurement of concen-

tration in the calibration samples is accurate and precise. If these assumptions are

not valid, the model will likely require a large number of terms and the obtained re-

gression coefficients will not be reliable for use in predicting concentrations of future

samples.

The key challenges in the practical use of PCR are to define the spectral region

that is to be used in the calculation of the loading vectors and to determine h, the

optimal number of loadings to use in the calibration model. If spectral wavelengths

are included in the PCA calculation that are high in noise or that contain information

irrelevant to the analyte determination, the computed loadings will be sub-optimal

for use in modeling the analyte concentrations. This problem arises from the fact

that the loading vectors that explain the largest sources of variation in the input data

are selected for use in the calibration model. If the spectral variance arising from

changes in analyte concentration represents a minor component of the total variance,

PCA may not necessarily extract the specific analyte information efficiently.

In practical use with spectroscopic data, h will typically be much less than p,

the number of spectral points in the response data submitted to PCA. Determining

the best value of h is an optimization issue, as there is no theoretically best value.

Various strategies can be employed to determine the optimal value of h.71 In the

dissertation research, selection of h in the latent variable models was incorporated

into the model optimization step. The specific approach used with each data set will
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be described in the relevant results chapters.

3.4.2 Partial Least-Squares Regression

A limitation of PCA is that decomposition of the input data is based solely

on the explanation of variance. The selected principal components will be those that

explain the most spectral variance, not necessarily those that explain the informa-

tion most useful in modeling changes in analyte concentration. The partial least-

squares (PLS) regression method is a related latent variable technique that attempts

to address this limitation. The PLS method has been widely applied in analytical

chemistry.3,61,72

Compared to PCA, instead of modeling the experimental response exclusively,

PLS also takes the concentration of the analyte of interest into account in generating

the orthogonal latent variables. For the calibration data, the obtained components

maximize the covariance between the spectra and the reference concentrations. The

joint decomposition of the spectral matrix, X, and the concentration vector, c, can

be implemented by

X = TP′ + E (3.27)

c = Tq + e (3.28)

The matrix, X, in Eq. 3.27 contains the n measured calibration spectra in the rows

(p wavelengths), while c in Eq. 3.28 is the n× 1 concentration vector of the analyte

of interest. The matrices, T, P, and E, are analogous to T, V, and E in Eq. 3.24.



63

In terms of dimensionality, T is the n × h score matrix and P is the p × h loading

matrix, whose rows are the empirically derived latent variables (also called spectral

loadings).

In PLS, the concentration vector c is also decomposed into matrix T and

vector q as shown in Eq. 3.28. The T matrix is the same as the one in Eq. 3.27.

The vector q (h× 1)) is analogous to a loading vector of the concentrations. After X

and c are decomposed into the h latent variables, the remaining information is found

in the spectral residual matrix, E, and the concentration residual vector e. The

scores are orthogonal, but the spectral loadings (P) are not orthogonal and they are

normally not normalized. In PLS, the scores and loadings are dependent on both the

instrumental responses and concentrations of analyte, which is different from PCA.

There are various algorithms to link X and c in calculating the scores and

loadings.72,73 In this thesis, the decomposition of X and c is obtained by computing

a set of loading weights, w, for each spectral loading. First of all, X and c are

mean-centered. The first loading weight vector w1 is calculated as

w1 =
X′c

‖X′c‖
(3.29)

As shown in Eq. 3.29, w1 is normalized to the unit length by ‖X′c‖ . With

w1 as a basis vector, the first score vector (t1) is defined as the projection of X on

w1 as shown in Eq. 3.30, and its corresponding spectral loading (p1) is computed as

in Eq. 3.31. Similarly, the first concentration loading is given by Eq. 3.32. These

calculations are least-squares fits of the spectral matrix and concentration vector onto
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the computed scores.

t = Xw1 (3.30)

p1 =
Xt1

‖t′1t1‖
(3.31)

q1 =
t′1c1

‖t′1t1‖
(3.32)

After the scores and loadings are computed for the first latent variable, the

residuals of the spectral matrix and concentration vector are calculated, respectively.

E1 = X− t1p
′
1 (3.33)

e1 = c− t1q1 (3.34)

The residuals express the remaining spectral information (E1) and concentration

information (e1) which was not extracted into t1.

Next, the second vector of loading weights, scores, and loadings are calculated

by Eqs. 3.30 - 3.32 by simply replacing X and c with E1 and e1. After that,

the new spectral and concentration residuals are computed by Eqs. 3.33 and 3.34.

This procedure is repeated until the scores and loadings of the h latent variables are

obtained.

In PLS, using the loading weight vectors, w, is important in calculating the
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scores, t, because it incorporates the information from the analyte concentration into

the calculation of the PLS factors. Therefore, PLS is a bilinear latent variable model.

The extraction of information from X is biased to explain the information in c, rather

than solely to explain the variance in X.

Once the scores are obtained, the procedure of building the calibration model

with the PLS method is identical to that presented previously for PCR. For the pre-

diction of unknown concentrations, the response matrix of unknown spectra (Rpred)

is first centered with the mean of the calibration data and the prediction score ma-

trix is computed with the first vector of loading weights computed previously from

the calibration data. Then, the contribution of t1,pred is removed from the response

matrix by use of the previously computed first spectral loading. These calculations

are summarized in Eqs. 3.35 and 3.36

t1,pred = Rpredw1 (3.35)

Rpred,1 = Rpred − t1,predp
′
1 (3.36)

This process continues to obtain all the required scores. The unknown con-

centration can then be calculated by use of the previously computed regression co-

efficients. A mathematically equivalent way of prediction is through the use of a

regression coefficient vector as specified in Eq. 3.37.

b = W(P′W)
−1

q (3.37)



66

ĉ = Rpredb + c̄ (3.38)

In the equations above, W is a p×h matrix with the columns containing the loading

weights and P is a p× h matrix in which the columns are the spectral loadings. The

elements of q are the concentration loadings, and c̄ is the mean concentration from

the calibration data.

The same issues discussed previously with respect to optimization of the num-

ber of latent variables and the spectral range pertain to the PLS method. These

decisions are often more difficult with PLS than with PCA. Because the concentra-

tions are used in the extraction of the spectral loadings, there is the likelihood that

random noise or spectral artifacts that happen to correlate with the concentration

vector will be extracted from the calibration data matrix. These factors may appear

to be significant when building the regression model, but they will not be useful when

the model is applied to future data. Both the spectral range submitted to the PLS

calculation and the number of latent variables used in the calibration model must be

studied carefully during the model optimization process.

3.5 Model Validation

The ultimate goal of building the calibration model is to predict the analyte

concentrations for data collected in the future. Hence, model validation is an essential

step in model development to help ensure good prediction performance. Validation

of the calibration model can be applied with either internal or external approaches.
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3.5.1 Internal Validation

With internal validation, a model is tested within the calibration data. The

value of SEC (Eq. 3.16) can provide a rough estimation of model performance. How-

ever, especially in PCR and PLS approaches, calibration performance can always be

improved by increasing the model size; therefore, it would be misleading if the model

were optimized based on the calibration performance alone. Two approaches to inter-

nal validation will be discussed: (1) use of a monitoring set and (2) cross-validation.

A subset of the calibration data can be selected to evaluate the prediction

performance of the model. This data set is called the “monitoring data”. The moni-

toring data set is withheld from the calculation of the calibration model and is used

subsequently to test the computed model. This approach assumes the data in the

monitoring set will resemble the future data to which the model will be applied.

One way to pick the monitoring set is to split the calibration set into subsets

of calibration and monitoring. The splitting can be done randomly or on the basis

of the sequence of the data collection. As noted above, the calibration model is

constructed first with the calibration subset, and the model is then applied to predict

the concentrations corresponding to the spectra in the monitoring set for the purpose

of evaluating prediction performance. The SEP calculation from Eq. 3.17 can be

applied to the monitoring data to produce the standard error of monitoring (SEM).

The SEM value estimates the prediction performance that would be obtained

for data that are consistent with the spectra in the calibration set. Consequently, it

can serve as a criterion for use in optimizing the parameters of the calibration model
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such as the number of latent variables or the wavelengths submitted to PCA or PLS.

Especially for the PLS method, adding new factors to the model will always

decrease the calibration error. However, unnecessary factors could introduce irrele-

vant information into the model and may cause a poor prediction for data outside of

the calibration set. Stated differently, selection of too many factors in the calibration

model may make the model lose its ability to generalize to samples collected in the

future. A traditional procedure of the optimization is to systematically increase the

number of latent variables and calculate the SEM values for each level. Typically, the

SEM values will decrease as the model size increases, and taper off (perhaps increase)

as the model size becomes greater than required. The rule of model size optimization

is to select the fewest number of factors that provide an adequate SEM value. An

F-test is often employed to choose the model size that provides a value of SEM that

is not statistically different from the minimum SEM.

Instead of selecting one subset of the calibration data for use in evaluating

prediction performance, cross-validation cycles the calibration set through calibra-

tion/monitoring subsets such that each calibration spectrum is withheld from the

model and predicted once. The size of the monitoring subset can vary from a single

spectrum (leave-one-out cross-validation) to any larger fraction of the calibration set.

When subsets of size greater than one are used, a decision has to be made as to how

to sample the subsets. The subsets can be contiguous blocks of the calibration set,

randomly picked subsets, or subsets defined through a structured selection pattern

(e.g., every 10th spectrum).
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The predicted concentrations obtained from cycling through the subsets are

pooled and an overall prediction error is computed. The calculation is the same as

in Eq. 3.17, with the result typically called the cross-validated SEP (CV-SEP). The

CV-SEP value is then used as described above for the selection of the number of

model terms or for the optimization of other model parameters.

3.5.2 External Validation

With internal validation, using the monitoring subset selected from the cali-

bration set may result in an overly optimistic evaluation. In predicting data collected

in the future, however, if time-correlated issues, such as instrumental drift or envi-

ronmental changes (e.g., temperature drift) are present, the calibration model may

perform poorly since additional factors may be missed. Therefore, an external vali-

dation is often necessary to help evaluate such issues and obtain a realistic estimate

of model performance. With this approach, an external data set collected outside

of the time frame of the calibration data is used to evaluate the calibration model

performance. The SEP is used to evaluate performance instead of the SEM.

3.6 Optimization Methods

As discussed previously, between the choice of preprocessing parameters and

parameters associated with the calibration model calculation, there are many opti-

mization decisions that must be made in order to obtain a well-performing calibration

model. Optimization can be performed by assigning discrete levels to each of the

variables to be optimized and then evaluating each combination of parameter values
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through calculation of SEM, CV-SEP, or SEP. This method is termed a grid search.

It is a straightforward procedure but is limited in that the use of a large search space

(i.e., many variables and many levels) is computationally impractical.

In this research, a numerical optimization procedure called particle swarm op-

timization (PSO) was employed. Numerical optimization methods allow the definition

of a large search space and then use various algorithmic strategies to navigate the

search space in search of the optimal combination of parameters. This is done with-

out evaluating every combination of parameter values and is thus computationally

more attractive if a large search space needs to be interrogated. The PSO method is

outlined below.

3.6.1 Particle Swarm Optimization

The PSO method is a population-based stochastic optimization method de-

veloped by Eberhart and Kennedy in 1995.74–76 This optimization technique was

discovered through simulation of a social behavior model, e.g., fish schooling, bird

flocking, or people working together. It is based on the assumption of social infor-

mation exchange. For example, to solve a problem as a team, people would exchange

information, beliefs and attitudes with each other. The interaction could help them

in moving towards the correct solution, and hence enable them to solve the problem

faster. The particles in PSO are metaphors of a group of people. They fly in the

search space, adjust locations and directions and try to find the optimal solution by

exchanging information.
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The PSO technique has many similarities with the genetic algorithm (GA)77,78

and other evolutionary computational methods. Such evolutionary optimization meth-

ods start with an initial population with random solutions, determine how good the

solutions are by use of a fitness function, and search for the optima by updating the

solutions over generations. The PSO algorithm has been successfully applied in vari-

ous application areas for optimization of a wide range of continuous function.75,79,80

Next, a brief introduction of the PSO implementation used in the dissertation research

is provided.

The PSO implementation divides into three steps, initialization, evaluation

and update. In the initialization step, PSO creates an initial population of particles

with random positions ~xi and velocities ~vi. Each particle is a potential solution of the

problem. The dimensionality of the particles is determined by how many parameters

are optimized. The positions and the velocities of the particles are represented nu-

merically as vectors of integers, which are the indices of the mapped possible values

of the parameters.

The second step involves the evaluation of the position of each particle with a

fitness function. The fitness value is computed by the fitness function to judge how

good the position of the particle is as a solution. The fitness value is the criterion

used to guide the particles moving toward the global optimum. For each particle, the

best solution achieved so far is stored and its fitness value is called its pbest. Another

‘best’ value tracked by PSO is the best value obtained so far by the neighbors of the

particle. It is called lbest. When a particle takes all of the population as its topological
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neighbors, the best value becomes the global best and is called gbest. The pbest and

gbest and their corresponding locations are recorded for each generation.

At the third step, all particles are updated to a new position and velocity.

When flying through the search space, each particle keeps track of its coordinates in

the space. The basic concept of the updating strategy is that each particle is accel-

erating toward its pbest and the gbest locations with a random weighted acceleration.

Both the velocities and positions are updated based on the gbest and pbest of each

particle. At each generation, the next position of each particle is calculated by the

current position and the new velocity. The new velocity value of each particle is de-

termined based upon the current velocity, the distance between the current position

and pbest and the distance to gbest. Eqs. 3.39 and 3.40 show the basic algorithm.

~xk+1
i = ~xki + ~vk+1

i (3.39)

~vk+1
i = a× ~vki + b1 × r1 × (~p− ~xki ) + b2 × r2 × (~g − ~xki ) (3.40)

In Eqs. 3.39 and 3.40, ~xk+1
i and ~xki represent the positions of particle i at iterations

k + 1 and k, respectively. Analogously, ~vki and ~vk+1
i are the corresponding velocities.

The term ~p is the pbest of particle i while ~g represents the gbest, which is the global

best location in the whole swarm of particles. In updating the velocity, the coefficient

a is an inertial constant, which specifies how much the velocity in the next generation

is affected by the current velocity. Coefficients b1 and b2 are constants to define the
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strength of attractions of pbest and the gbest to the particle. The random values,

r1 and r2, are used to introduce a degree of randomness in the process. They are

randomly selected between [0, 1] from the uniform distribution. Introducing a random

component into the optimization can help to avoid local optima when exploring the

search space. The two equations indicate that each particle adjusts its position based

on the two positions (pbest and gbest) when moving through the search space. The

acceleration process of a two-dimensional particle is shown in Figure 3.4.

The evaluation and updating steps are then repeated for a specified number of

generations or until the best location (best fit) has been found. The PSO method was

used as part of the calibration development work in Chapters 5 - 7. Specific details

regarding the variables optimized and the fitness function used will be provided in

the relevant sections of those chapters.
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Figure 3.4. An example of the acceleration process of the particles in the updating
step of PSO in a two-dimensional search space based on variables a and b to be
optimized. The values, x and x’, are the initial and updated location vectors of one
particle, respectively, while v and v’ are the corresponding velocity vectors. Point p
is the current personal best location and point g is the global best location.
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CHAPTER 4
QUANTITATIVE DETERMINATION OF METHANOL AND

ETHANOL WITH SYNTHETIC CALIBRATION SPECTRA IN
PASSIVE FOURIER TRANSFORM INFRARED REMOTE SENSING

MEASUREMENTS

4.1 Introduction

Fourier transform infrared (FT-IR) remote sensing is used to monitor atmo-

spheric species between the spectrometer and an IR source. Depending on the IR

source type, remote sensing can be divided into active and passive modes. Measure-

ments which rely on an instrumentally controlled IR source are categorized as active

mode, while those that view the uncontrolled (i.e., naturally occurring) background

IR radiation present in the scene are termed passive measurements. The passive con-

figuration is much more operationally versatile, because no controlled IR background

is commonly encountered in either ground-based or airborne measurement scenarios.

This technique has been used in various atmospheric monitoring applications because

of its capability to analyze a large volume of the atmosphere without sample collec-

tions. It offers applications in stack emission analysis, detecting toxic gases in the

workplace, and leak detection.81,82

In the passive mode experiment, a ground-based emission spectrometer con-

figured with telescope-enhanced entrance optics allows the collection of IR radiance

within the field of view (FOV) against sky, terrestrial or manmade backgrounds. The

spectrometer will collect the IR radiance emitted from the background, analyte cloud

and atmospheric gases in the FOV. In terms of atmospheric gases, carbon dioxide,
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water vapor and ozone can be interfering components. Emission or absorption fea-

tures of the analyte depend on the temperature difference between the analyte (e.g.,

the gaseous effluent from a stack) and the background. If the background is at a lower

temperature than the analyte, emission spectra will be obtained. With the opposite

condition, absorption occurs. According to Planck’s function, temperature is the ma-

jor factor in determining the radiance intensity. Therefore, a significant temperature

differential between the analyte plume and the background is the primary require-

ment for detection capability.83 The greater the differential temperature is, the more

analyte signal can be observed superimposed on the background signal.

Usually in remote sensing measurements, the concentration and path length

are taken as a combined value, because there is no path length measurement (l)

offered for gas samples during an outdoor data collection. Also, it is impossible to

differentiate a narrow analyte cloud with a high concentration (c) from a wide analyte

plume with a low concentration. The combined product (cl) is used to represent the

abundance of the sample. The product value is termed path-averaged concentration

with the typical units of part-per-million-meter (ppm-m).

In the passive detection mode, the radiance emitted from the background is

constantly varying, as the temperature of the background within the FOV is un-

controlled. If the spectrometer is placed on a moving platform such as an aircraft,

the background scene is also undergoing constant change, resulting in a correspond-

ing change in emissivity. Emissivity is a parameter varying from zero to one that

describes the degree to which a material behaves as a theoretical blackbody. Mate-
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rials with an emissivity of one behave as a blackbody, while those with emissivities

less than one are termed graybodies. Even in a static measurement application, the

occurrence of moving objects in the background scene can lead to variation in emis-

sivity. In addition, the composition of the intervening atmospheric gases between the

spectrometer and background is constantly changing because of changing meteoro-

logical conditions or spectrometer movement. All of these factors combine to produce

an unstable background radiance. This variance in the background radiance makes

it impossible to obtain stable reference background spectra and also stable sample

spectra. The traditional laboratory spectral processing approach based on taking the

ratio of a sample spectrum to a stable background spectrum is not applicable.

These factors make the development of a successful quantitative analysis pro-

cedure for passive IR data extremely challenging. The principal difficulties are (1)

to extract reliable quantitative information from the measurement and (2) to corre-

late spectral intensities to analyte concentrations through a calibration procedure.

Signal processing methods (e.g., digital filtering) have been investigated to assist the

information extraction step by removal of sources of data variation that are unrelated

to changes in the concentration of a target analyte.11,44,83,84 The calibration proce-

dure that relates signal intensity to concentration is complicated by the high cost of

conducting controlled release measurements in the outdoor environment, as well as

by the significant sources of uncertainty inherent in such measurements. Outdoor

releases of toxic chemicals have additional impediments to practicality.

In the work described in this chapter, a data synthesis approach is used to
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develop calibration data sets for use in building quantitative models based on passive

IR remote sensing data. The method of using synthetic calibration spectra based

on a linear radiometric model has been successfully applied in both the spectral and

interferogram domains.83–85 Using synthetic spectral data enables flexibility in chang-

ing key input parameters such as the chemical components (analytes or interferences)

in the FOV, analyte concentrations, and the temperatures of the background and

target cloud. When building a calibration model, similarity between the calibration

data and any prediction data to which the model will be applied is important. If the

conditions associated with the prediction data are known, the simulation approach

is beneficial in flexibly generating calibration data that are similar to the prediction

data.

In this chapter, a quantitative analysis method for pure and mixture samples

of ethanol and methanol is developed by use of simulated calibration data computed

through appropriate radiometric models. Gas spectra collected in the laboratory from

a static gas cell and field data collected during an outdoor stack emission monitoring

experiment were studied. Due to instabilities in the experimental conditions, the ini-

tial part of the experimental data needed to be used to determine certain parameters

associated with a given measurement block. After that, synthetic calibration spec-

tra were generated to build partial least-squares (PLS) models for quantification of

subsequent samples.
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4.2 Theory

4.2.1 Radiance Model

The work described here involved the use of a spectral synthesis procedure

to obtain data for use in building quantitative models for predicting analyte con-

centration from passive IR spectra. This required the adoption of an appropriate

radiometric model for use in simulating the laboratory and field data employed in

this work. Details about the radiance model applied here have been introduced in

Chapter 2.

The basic setup of the model assumes a target gas viewed against a back-

ground blackbody or graybody scene. It is assumed that the target vapor fills the

spectrometer field-of-view (FOV) and that any light loss due to scattering can be

ignored. The target gas contributes to the signal received by the sensor by either

absorbing light emitted by the background or by acting as a selective radiator and

thereby directly emitting light. In this model, the spectral radiance in the FOV at a

given wavelength can be written as

Lx = τaτtLbkg + (1− τaτt)Lt (4.1)

In Eq. 4.1, Lx represents the total spectral radiance emanating from the

scene, Lbkg is the radiance of the background at a temperature of Tbkg, and Lt is the

radiance estimated by Planck’s function at the temperature of the target gas, Tt. The

radiance values are modified by τa and τt, the transmittance values of the intervening
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atmosphere and the target vapor, respectively. In the Lbkg term, the transmittance

values are multiplied by the background radiance to encode the absorption component

of the received signal. In the Lt term, (1−τaτt) represents the emittance of the target

gas. Multiplication by Lt specifies the emission component of the signal.

The transmittance of the target gas (τt) is defined as τ = exp(−αcl), where

α is the absorptivity of the analyte at the specified wavelength (m2/mg), c is the

concentration of the gas (mg/m3), and l is the optical pathlength or depth of the

cloud along the optical axis (m). The absorbance (A) of the target cloud can be

calculated by A = 0.434(αcl), where cl is the path-averaged concentration noted

previously.

For the work described here, the emissivity of the background will be assumed

to be 1.0 in all cases, thereby allowing it to be modeled with Planck’s function. In

addition, the atmospheric transmittance term will be ignored (i.e., τa ≈ 1) because

of the small distance between the background and spectrometer in the data sets

employed in this work. Thus, for a given target gas, the radiance received by the sensor

will be assumed to depend solely on the background and target gas temperatures, the

concentration of the gas, and the cloud depth.

4.2.2 Generation of Synthetic FT-IR Spectra

The synthesis of passive single-beam FT-IR spectra was performed according

to Eq. 4.1. Employing the assumption that the emissivity equals unity, the spectral
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radiance can be computed from Planck’s blackbody equation:

L∗(~ν, T ) =
C1 × ν̄3

exp(C2×ν̄2
T

)− 1
(4.2)

where C1 = 2hc2 = 1.191 × 10−12W/cm2sr(cm−1)4 and C2 = hc/k = 1.439K · cm.

The values, C1 and C2, are termed the first and second radiation constants, ν̄ is the

wavenumber of the radiance, and T is the temperature of the blackbody. From this

equation, for the spectrum of a perfect blackbody material, the only parameter that

can affect the spectral intensity is the temperature.

Besides the spectral radiance received from the scene within the FOV, the

instrument itself also contributes to the recorded single-beam spectrum. In com-

puting the spectrum, specific information about the instrument must be taken into

consideration in the form of the detector response and the instrument self-emission

function.

As a function of wavenumber, the single-beam spectrum recorded by the spec-

trometer while viewing the input radiance, Lx can be written mathematically as

defined by Shaffer and Combs:83

S = r(Lx + Le) (4.3)

In Eq. 4.3, S is the computed single-beam spectrum, r is the instrument responsiv-

ity, and Le is the instrument self-emission function, also called the instrument offset.

The responsivity or gain primarily measures the sensitivity of the detector at each
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wavenumber. The self-emission term arises from both emission and scattering contri-

butions of various components in the optical train and becomes significant because the

temperature of the ambient background is similar to the internal temperature of the

instrument. The two instrumental terms in Eq. 4.3 are temperature-dependent and

thereby result in instability during the operation of a passive FT-IR spectrometer.

Calculation of an accurate single-beam spectrum requires that r and Le be

defined. In a stationary spectrometer configuration, this is done by measuring a

reference IR blackbody source at “hot” and “cold” temperatures. Then, r and Le are

calculated according to Ballard86 as

r = (Sh − Sc)/(L∗h − L∗c) (4.4)

Le = [(Sc × L∗h)− (Sh × L∗c)]/(Sh − Sc) (4.5)

In Eqs. 4.4 and 4.5, Sh and Sc are the single-beam spectra for the hot and cold

blackbody source collected by the FT-IR instrument, and L∗h and L∗c are the radiances

predicted by Planck’s function at the same hot and cold temperatures, respectively.

Assuming a linear detector response, r and Le can be computed. Subsequently, Eqs.

4.1 and 4.3 can be used together to produce a synthetic single-beam spectrum that

incorporates the desired values of Tbkg, Tt, and cl.
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4.3 Experimental

4.3.1 Instrumentation

4.3.1.1 Laboratory Data

The instrumental setup of the laboratory data collection in this study is shown

in Figure 4.1A. Interferogram data were collected with a Midac FT-IR emission

spectrometer (Model M2411, Midac Corp., Westfield, MA) equipped with a liquid

nitrogen-cooled Hd:Cd:Te (MCT) detector. Interferograms of 1024 points were col-

lected as single scans and sampled at every eight zero-crossings of the internal He-Ne

reference laser. The maximum spectral frequency was 1974.75 cm−1 and the nominal

spectral resolution was 8 cm−1. Interferograms were collected at approximately 1.6

scans per sec.

Background radiance in this experiment was provided by a 14×14 inch black-

body source (Electro Optical Industries, Inc., Santa Barbara, CA). The device was

thermoelectrically controlled in order to allow both cooling and heating relative to

ambient temperature. This allowed simulating both emission and absorption modes

of gas samples.

As shown in Figure 4.1A, radiance from the blackbody source was directed

into a gas cell and then into the entrance port of the spectrometer by use of two 90◦

off-axis-gold coated parabolic mirrors. The mirror dimensions were 7× 9 cm and the

reflected effective focal length was 177.8 mm. A diode laser was used to align the

optical path to make sure maximum radiance was received by the spectrometer.

In the laboratory data collection, ethanol (absolute 200 proof, AAPER Alcohol
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and Chemical Co., Shelbyville, KY) and methanol (99.8%, Spectrum, Gardena, CA)

vapors were used as the analytes of interest. Liquid samples were injected by a 10

µL syringe (Hamilton, Co., Reno, NV) into a Pyrex gas cell at atmospheric pressure

and allowed to vaporize at room temperature. For sample injections at or below 0.1

µL effective volume, the pure liquid was first diluted 1/10 with water and 1.0 µL of

the mixture was injected into the gas cell.

The sample cell was fitted with anti-reflection coated ZnSe windows (Janos

Technology, Keene, NH) with a thickness of 5 mm. The diameter of the cell was 50.8

mm and the length was 10 cm, which was used as l in the implementation of Eq. 4.3.

The cell volume was estimated as 0.152± 0.002 L on the basis of four replicate trials

of weighing the cell before and after filling it with water. The corresponding volume

of water was then estimated by use of the density of water at known temperatures.

The temperature of the cell was monitored by use of a Type-T thermocouple and

digital thermocouple meter (Omega Engineering, Stamford, CT).

4.3.1.2 Field Data

Field data used in this work were collected by our research collaborators at

the U.S. Army Edgewood Chemical Biological Center (Aberdeen Proving Ground,

MD). A Brunswick FT-IR spectrometer, Model 21 (Intellitec, DeLand, FL) was used

to collect the interferogram data. The spectrometer was equipped with a narrow-

band MCT detector optimized to cover the 800 to 1400 cm−1 spectral region. The

MCT detector was cooled with a closed-cycle Stirling cryogenic cooler. Interferograms
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consisting of 1024 points were again collected as single scans and sampled at every

eight zero-crossings of the He-Ne reference laser. The maximum spectral frequency

was 1974.75 cm−1 and the nominal spectral resolution was 8 cm−1. Interferograms

were collected at approximately 2.4 scans per sec.

As shown in Figure 4.1B, the spectrometer was placed about 2 m above the

ground and inclined at an angle to view the exit of a portable emission stack approx-

imately 4.6 m above the ground. The FOV of the spectrometer was restricted to 0.5◦

with a refractive telescope. The stack was placed 19 m away from the spectrome-

ter. The diameter of the stack was 0.45 m. A backdrop material made of polyvinyl

chloride (PVC) was located 22 m from the spectrometer. The backdrop was used to

simulate a simple terrestrial background. The dimensions of the PVC material were

2.75 × 3.8 m and the measured emissivity was 0.9.

In passive remote sensing, both the ground and sky can be used as back-

grounds. The chosen background depends on the view direction to the plume. The

terrestrial background obtained when the spectrometer views the plume from above

is more stable than the sky background when the plume is viewed from below. This

measurement was configured to simulate the scenario of stack emission monitoring

from above or the case in which an artificial backdrop is placed behind the stack in

order to present the spectrometer with a simpler background scene.

Gas plumes were generated with a portable emission stack (Aerosurvey Inc.,

Manhattan, KS) that has been described previously by Chaffin.87 The methanol was

reagent grade (Tilley Chemical Company, Baltimore, MD), while the ethanol was
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absolute 200 proof (AAPER Alcohol and Chemical Company, Shelbyville, KY). The

liquid analytes were introduced to the plume and vaporized by passing them through

a hot air stream generated by a propane burner. The sample introduced to the

plume was controlled by a flow meter, which had been mass-calibrated for ethanol

and methanol. The concentration of each sample collection was estimated from the

mass flow rates and the air velocity in the stack. The mass flow rates were monitored

by measuring the weight change of the analyte in the container during the sample

release. The air velocity was measured with a Pitot tube placed in the center of

the stack, approximately 20 cm from the exit. The stack temperature was varied for

evaluation of temperature effects. It was measured with a thermocouple placed 10

cm from the top of the stack.

4.3.2 Data Collection and Partitioning

4.3.2.1 Laboratory Data

The laboratory data were collected across three days. There were eight pure

samples of ethanol and six pure samples of methanol collected. The temperature of

the sample vapor was uncontrolled and allowed to equilibrate with the current room

temperature (approx. 23 ◦C). The blackbody temperature varied between 50 and 5 ◦C

to produce analyte spectral signals in either absorption or emission mode. Blackbody

temperatures were ramped either up or down in 5◦ increments across the range rather

than randomized. Because of instability in the collected single-beam spectra, not all

samples could be studied at all temperatures.
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Figure 4.1. Experimental setup of data collection. (A) Laboratory experiment. The
radiance was generated by the blackbody source (14 × 14 inch). Radiance, directed
by the parabolic mirror (7 × 9 cm) passed through the sample cell and was directed
to the spectrometer. The blackbody temperature varied between 5 to 50 ◦C. (B) Field
experiments. The spectrometer was 2 m above the ground and 22 m away from the
PVC backdrop (2.75m × 3.8 m). The FOV was restricted to 0.5◦ with a refractive
telescope. The emission stack was placed in front of the backdrop and 19 m to the
spectrometer. The plume was generated at three temperatures of 150, 175, and 200
◦C.
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With each prepared ethanol or methanol sample, the data collection protocol

employed three experimental configurations: (1) collection of open-beam data (i.e.,

no sample cell present), (2) collection of blank data in which the freshly evacuated

cell was placed in the optical path, and (3) acquisition of sample cell data for each

prepared ethanol or methanol sample. With each experimental configuration, black-

body temperatures were sampled at various steps over the range of 5 to 50 ◦C. At

each background temperature level, 100 interferograms were collected.

After injecting each sample into the gas cell, the cell was allowed to equilibrate

for 1-3 h. After equilibration, the cell was placed in a conventional laboratory FT-

IR spectrometer (Bruker Vertex 70, Bruker Optics, Billerica, MA or Nicolet 6700,

Thermo-Nicolet, Corp., Madison, WI) and an absorbance spectrum was obtained at

a nominal resolution of 4 cm−1. For six of the 14 total samples, a second replicate

absorbance spectrum was also measured to assess the concentration stability within

the gas cell.

Sample concentrations were estimated in two ways. Using tabulated densities

for ethanol and methanol of 0.7893 and 0.7914 g/cm3,88 the delivered volumes were

converted to mass and then to moles. Air pressure and temperature measurements

in the laboratory at the time of the data collection were then used to estimate the

number of moles of air in the cell assuming ideal gas behavior. The path averaged

concentration in ppm-m was estimated on the basis of the cell path length of 0.1 m

and the ratio of moles of analyte to moles of air.

Concentrations were also estimated by use of the collected absorbance spectra.
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In each spectrum, the range of 700 -1700 cm−1 was fitted by multiple linear regression

to a pure-component spectrum of the analyte at 1.0 ppm-m taken from the Pacific

Northwest National Laboratory (PNNL) quantitative IR vapor phase library89. The

fit also included a 2nd-order polynomial baseline term in each case and a PNNL spec-

trum of water for the samples based on mixtures of water and analyte. The PNNL

spectra used were all collected at 25 ◦C and a resolution of ∼0.1 cm−1. Before fitting

to the experimental spectra, the PNNL spectra were deresolved to match the resolu-

tion of the Thermo and Bruker spectrometers. The deresolving procedure involved

the convolution of the PNNL spectrum with a boxcar windowing function, with the

width of the window optimized to maximize the quality of fit to the experimental

spectra. For the data collected with the Thermo and Bruker spectrometers, respec-

tively, windowing functions with widths of 4.16 cm−1 and either 6.15 cm−1 or 6.33

cm−1 produced the best fits.

Comparison of the results obtained with the two concentration estimation

procedures revealed results within 1.3 – 6.5% for ethanol samples and 13.9 – 17.0%

for methanol samples for which the injection volume was at least 0.75 µL. Greater

differences were noted for smaller injection volumes. Concentrations based on the

absorbance spectra were consistently less than those based on direct calculation. This

was assumed to be an indication of incomplete vaporization of the liquid sample in

the gas cell. For this reason, coupled with uncertainties in the injection volumes, the

concentrations based on the absorbance spectra were used in subsequent calculations.

For the cases in which replicate absorbance spectra were collected, differences in
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concentration estimates across replicates were always less than 1%. This indicated

that stable concentrations were achievable in the gas cell and provided confidence

that the concentration estimates were applicable to the passive IR spectra.

The maximum concentration of ethanol was 2432.5 ppm-m with the minimum

at 44.9 ppm-m. The concentration range of methanol was 37.4 to 1181.9 ppm-m. A

summary of the collected data is provided in Table 4.1.

The 100 interferograms of the blackbody with and without the empty sample

cell in the light path were used to estimate the instrumental parameters (responsivity

and self emission), which are important in synthesis of the spectrum.

In obtaining replicates of sample spectra, different interferogram co-addition

levels were compared. With 100 interferograms, co-adding 50 inteferograms produces

two replicates for each sample, and a co-addition level of 30 will result in three

replicates. The spectral noise level is usually used to evaluate the quality of the data.

Random noise should cancel according to the square root of the number of co-added

scans. The noise level can be computed from the ratio among the replicate spectra

by calculating the absorbance values from the transmittance as:

Ai = −log
Prep1,i
Prep2,i

(4.6)

where Ai denotes the absorbance value, Prep1,i, Prep2,i are the intensities of the single-

beam spectra corresponding to the replicates, and i represents the spectral point

(i.e., wavenumber) at which the value is used. The resulting absorbance spectrum is
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termed a ‘100% line’. For n replicates, n!/(2!(n− 2)!) ‘100% lines ’ can be obtained

by calculating all possible combinations from the replicates. Theoretically, the 100%

line should reflect random noise about a flat baseline at 0.0 absorbance units (AU).

However, instrumental variation or environmental changes during the data collection

can produce a non-zero baseline (i.e., a systematic component in the 100% line). For

this reason, the baseline can be modeled by a polynomial function and the random

noise about this baseline can be used as a measure of the spectral noise level.

In the work reported here, the noise was estimated by the root-mean-squared

(RMS) error of the deviations between a fitted quadratic baseline function and the

computed 100% lines. Equation 4.7 details this calculation.

RMS =

√ ∑n
k=1 d

2
k

n− (df + 1)
(4.7)

In the equation, dk denotes the deviations from the fitted baseline model, n represents

the number of spectral points involved in the calculation, df specifies the degrees of

freedom associated with the model coefficients (2 for a quadratic model), and ‘+1’ is

for the intercept term in the baseline model.

In evaluating the differences among the co-addition levels, the spectral range

from 950 to 850 cm−1 was used to calculate the RMS noise values. Figure 4.2 shows

the RMS values of replicate spectra over the three days of data collection. It can be

observed that, for a large amount of samples, the noise level was lower at the higher

co-addition level. Samples where this was not the case included some systematic

variation across the replicates. Therefore, in the further data analysis, two replicates
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Table 4.1. Sampling Profile of Laboratory Data Collection

Analyte Background Temp.(◦C) No. of Sample

Ethanol 50/45/35/25 3a

40/30/20/15/10/5 8

Methanol 40/30/20/15/10/5 6

a These represent a subset of the 8 total ethanol samples.

based on 50 co-added interferograms were used. Because no replicates were needed

for background spectra, all interferograms were co-added to obtain the spectra of the

blackbody radiance at the different temperatures.

4.3.2.2 Field Data

The field data were collected over six days with the stack temperatures varied

among 150, 175 and 200 ◦C. The ambient temperatures over the six days ranged

over 14 to 30 ◦C. There were 225 samples released in total. Approximately 500

interferograms were collected for each sample. A sample was either a pure-component

release of methanol or ethanol, or a mixture of ethanol and methanol at a given

stack temperature. Table 4.2 lists the sampling details in the data collection. The

concentration range of the pure ethanol releases was 28 - 284 ppm-m, while the

corresponding range of methanol was 7 - 284 ppm-m.

A uniform experimental design90 was used in designing the targeted mixture

concentrations. For mixture releases, the maximum concentration was 276/270 ppm-

m with the minimum at 21/135 ppm-m in terms of the ethanol/methanol ratio. Figure

4.3 depicts a plot of the concentration distribution of methanol and ethanol. The
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Table 4.2. Sampling Profile of Field Data Collection

Day Analyte TStack (◦C) No. of Sample

1 Ethanol
175 12
200 12
150 12

2 Ethanol 175 29

3 Ethanol 200 30
150 27

4 Methanol
175 11
200 12
150 12

5 Methanol/Ethanol 175 34
Methanol 11

6 Methanol 175 23

random scattering indicates a low correlation between the two analytes.

For both pure and mixture samples, the path-averaged concentration was es-

timated on the basis of the stack exit diameter of 0.45 m and the ratio of the sample

vapor emission rate to the total air flow rate:

Concentration(ppm−m) =
Vapor Emission(ft3/min)

Total Air Flow(ft3/min)
×0.45(Stack Exit Diameter(m))

(4.8)

Besides the sample data collection, interferograms of an external blackbody

source at different temperatures were also collected on each day. This allowed the

calculation of the instrument responsivity and the self-emission function. The tem-

perature of the blackbody source varied between 10 and 115 ◦C.

Similar to the laboratory data, two replicate spectra were obtained for each

sample spectrum. An interferogram co-addition level at 200 was selected to assemble

the sample spectra for further data analysis.
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Figure 4.2. Bar plots of RMS noise values for groups of replicate spectra in the
laboratory data collection. The blue bars represent the RMS noise values obtained
from co-adding 50 interferograms, which results in two replicate spectra for each
sample. The red bars denote the noise values obtained when the co-addition level
was 30 and three replicates were obtained.
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Figure 4.4. Pure-component spectra of ethanol (A) and methanol (B). The effective
burden was 1 ppm-m. The point spacing was reduced from 0.06 cm−1 to 4 cm−1.
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4.3.3 Computation

All computation of laboratory data and field data was performed under MAT-

LAB (version 7.4 , The MathWorks, Inc., Natick, MA) running on a Dell Precision 670

workstation (Dell Computer Corp., Austin, TX) operating under Red Hat Enterprise

Linux WS (Red Hat, Inc., Raleigh, NC).

4.4 Results and Discussion

4.4.1 Description of Simulation Procedure

The basic premise of the quantitative analysis procedure employed here was

to apply Eqs. 4.1, 4.2 and 4.3 to synthesize calibration data, to use the resulting

calibration data to build PLS models for predicting analyte concentrations, and to

apply the resulting models to predict ‘unknown’ concentrations in the experimental

data collected in the laboratory and field. Through this procedure, new calibration

models could be constructed as often as needed to reflect changes in experimental

conditions.

The detector responsivity (r) and instrument self emission function (Le) terms

in Eq. 4.3 were estimated from the hot and cold blackbody measurements performed

on each day. With the assumption of linear detector response, any two temperatures

would be sufficient to determine the instrumental terms. In practice, the blackbody

source temperatures were selected in the range which would provide a close match to

the single-beam intensities of the sample spectra.

Tables 4.3a and 4.3b list the temperatures of the blackbody sources used in
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Table 4.3. Blackbody Source Temperatures Used in Estimating r and Le

(a) Laboratory Data

Targeted Background Blackbody Source Temperature
Temperature (◦C) Warm (◦C) Cold (◦C)

55 - 45 50 45
45 - 40 45 40
40 - 35 40 35
35 - 30 35 40
30 - 25 30 35
25 - 20 25 20
20 - 15 20 25
15 - 10 15 10
10 - 0 10 5

(b) Field Data

Day Blackbody Source Temperature
Warm (◦C) Cold (◦C)

1 2 3 45 30
4 50 35
5 35 10
6 30 15

calculating the instrumental responsivities and self-emission functions for the labo-

ratory and field data, respectively. To determine the Lx term in Eqs. 4.1 and 4.2,

the spectral radiances of the background and analyte cloud are needed, as well as the

analyte transmittance. The analyte transmittance is determined by the absorptivity

and the path-averaged concentration. Based on the assumption of unit emissivity of

the background and the use of Planck’s function to compute Lt associated with the

emission of the analyte cloud in Eq. 4.1, the spectral radiance values are determined

by the background and sample temperatures. Therefore, in order to generate the

synthetic calibration spectra, the background temperature, Tbkg,and analyte temper-

ature, Tt, are required.
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4.4.2 Estimation of Background and Analyte Temperatures

For both the laboratory and field data, attempts were made to estimate back-

ground and analyte temperatures during the data collection through experimental

measurements. It was found, however, that in some cases these temperatures did

not match the apparent temperatures reflected in the collected single-beam spectral

intensities. This was particularly problematic in the field data where analyte tem-

peratures were measured inside the stack but the spectral measurements acquired

radiance from above the stack exit. Similarly, the ambient air temperature was used

to estimate the temperature of the PVC backdrop that served as the target for the

spectral background, not considering the potential effect of direct solar heating of

the material. Consequently, the collected single-beam spectra were used to estimate

the apparent temperatures as described separately below for the laboratory and field

data.

4.4.2.1 Laboratory Data

In the data collection, a controlled-temperature blackbody was used to define

the background radiance. However, this presupposed that only radiance from the

blackbody was in the FOV of the spectrometer. As shown in the diagram of the

experimental setup in Figure 4.1, this required both a stable blackbody temperature

and precise alignment of the optics. Inspection of the data revealed some inconsis-

tencies in the single-beam intensities as they related to the temperature settings of

the blackbody source. Hence, it was necessary to verify the background tempera-
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ture before the sample quantification through a spectral fitting procedure. For the

laboratory data, if the fitted background temperature deviated significantly from the

expected value, the data at that background temperature were not used in further

calculations.

To estimate the background temperatures, the collected sample spectra were

studied individually. The strategy was to match the intensity of the synthesized

spectra with the collected spectra by varying the temperature inputs. The goal was

to seek the temperature which provided the minimum summed intensity difference

between the simulated and collected spectra as defined by h in Eq. 4.9

h =
n∑
i=1

|ISimulated,i − IExperimental,i| (4.9)

In the equation, ISimulated,i and IExperimental,i, i represent single-beam spectral

intensities for simulated and experimental data, respectively, at point i across the

range of n wavenumber points used. To estimate the background temperature, as

shown in the library absorbance spectra in Figure 4.4, there are wavenumber regions

where no spectral features of the analyte can be observed. Table 4.4 lists the spectral

ranges used to estimate the background temperatures for the methanol and ethanol

data.

The gas sample in the laboratory setup was obtained from the vaporized liquid

under room temperature. For the work performed with the laboratory data, the

analyte temperature was assumed to be equal to the measured room temperature.
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4.4.2.2 Field Data

As noted previously, significant variation was observed in the field data that

appeared inconsistent with the measured temperatures. Because the field data were

collected outdoors in an uncontrolled environment, they were subject to meteoro-

logical variation that was not captured in the temperature measurements. Issues of

optical alignment are also applicable to the field data.

To estimate the temperatures, sample spectra were again studied. As pre-

sented in Table 4.2, data were studied in subgroups according to their collection days

and the stack temperatures. On each day, the first sample released at a certain stack

temperature was studied for temperature estimation. To obtain replicate spectra

for the estimation procedure, the 500 interferograms were co-added in groups of 10

to produce 50 replicates. The spectral region and procedure used in estimating the

background temperature was the same as in the study of the laboratory data.

In estimating the analyte temperature, the region which contained the strongest

analyte feature was selected. Table 4.4 lists the spectral ranges used to estimate the

analyte temperature for the pure and mixture samples.

During the data collection in the field, the analyte temperature was found

to be unstable due to changes in environmental conditions. Another complicating

factor was that the analyte concentration was calculated based on the mass flow rate

of the analyte and the air velocity. Any variation in mass flow rate or air velocity

could cause fluctuations in the sample release, thereby affecting the actual observed

concentration. However, during a given sample collection of 500 interferograms (<
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5 min), the concentration was assumed to be constant. While both temperature

and concentration variation can cause changes in the observed single-beam spectral

intensity, with the assumption of a stable concentration release, all fluctuations were

attributed to variation in the the analyte temperature.

In the analyte temperature study, an analyte temperature higher than the

stack temperature was sometimes obtained. In reality, however, gases coming out of

the stack cannot be hotter than the stack temperature. This result could arise because

a sample was released with a higher concentration than the calculated concentration

value or because of a lower estimation of the background temperature. In this case,

the estimated temperature cannot be used. Similarly, a lower concentration release

will result in a lower analyte temperature estimation. However, for the open-air

experiment, there is no reference method to confirm the concentrations except the

theoretical calculation. Therefore, a diagnosis of sample release stability was required.

This was done by forcing the analyte temperature to fall in a particular range, not

higher than the stack temperature or lower than a certain value. Table 4.5 lists the

criterion by which spectra were discarded in the estimation of the analyte temperature

at different stack temperatures. For a sample release, if more than 30 % of the spectra

in the release failed to meet the criterion, the sample was considered to be an unstable

release. In this case, the next sample release was studied to estimate the temperature.
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Table 4.4. Spectral Segment Used in Temperature Estimation

Sample Sepctra (cm−1) Background Analyte

Ethanol 960 – 940 1085 – 1045
Methaol 955 – 935 1055 – 1015
Mixture 960 – 935 1085 – 1015

Table 4.5. Criterion of TAnalyte Range of Field Data

Stack Temperature Minimum Maximum
(◦C) (◦C) (◦C)

150 70 150
175 80 175
200 100 200

4.4.3 Generation of Calibration Models

After obtaining the background temperature, to predict the concentration of

each laboratory spectrum, a synthetic calibration data set with 300 spectra was gen-

erated. The plug-in analyte temperature was the current room temperature, while

the background temperature was randomly selected from a normal distribution with

the mean at the value obtained previously and a standard deviation of 0.5 ◦C. The

path-averaged concentrations were randomly selected from the range of 50 to 2000

ppm-m.

For the field data, all spectra in the calibration set were given a fixed analyte

temperature, which was taken as the median of the estimated temperatures across

the group of replicate spectra used in the temperature estimation. Values discarded

according to the criteria discussed above were not included in the calculation of the

median. The background temperature in each spectrum was randomly selected from a
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normal distribution with the same mean and standard deviation values obtained in the

sample study. The path-averaged concentration was randomly selected in the range

of 5 to 300 ppm-m. In modeling the mixture samples, the random concentrations of

methanol and ethanol were generated separately. The size of the calibration set was

200 spectra.

A partial least-squares (PLS) model was built with the synthetic calibration

data. The spectral range was selected according to the absorption bands of the

analyte. For the ethanol model, the spectral range was 1150 to 950 cm−1, while that

of methanol was 1100 – 950 cm−1. The number of latent variables was chosen as two

for single-component samples, incorporating one factor to model the background and

one to model the analyte. For mixture samples, one more factor was added to the

model to account for the interference. The spectral range remained the same as in

the single-analyte model.

4.4.4 Simulation Results

Simulated spectra with the corresponding laboratory or field spectra are plot-

ted in Figure 4.5. Good agreement can be observed between the synthetic and ex-

perimentally collected spectra. This visual comparison provides validation for the

radiance model and simulation procedures adopted in this research.

For the laboratory data, Figure 4.6 shows the estimated background temper-

ature for each replicate spectrum at different blackbody temperatures. At blackbody

temperatures of 20 and 25 ◦C, which were very close to the analyte temperature
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around 23 ◦C, the spectral features of either emission or absorption were extremely

weak and poor quantitative modeling results were obtained. Therefore, results at

these temperatures are not shown. Inspection of Figure 4.6 reveals that the esti-

mated blackbody temperatures were different in a number of cases from the theoreti-

cal blackbody temperatures corresponding to the source setting. As noted previously,

these deviations may have been in part due to imperfect alignment of the optical com-

ponents. Because of the uncertainty associated with these cases, if the obtained value

for the background temperature was ± 2 ◦C different from the theoretical value, the

spectrum was eliminated from further data analysis.

Tables 4.6a and 4.6b list the values of the standard error of prediction (SEP)

obtained by using the simulated calibration spectra for ethanol and methanol, respec-

tively. The SEP values are given in absolute terms in units of ppm-m, as well as the

median percentages relative to the reference concentration. The percentage relative

error is calculated by Eq. 4.10, where cPred and cActual are the estimated and reference

concentrations, respectively.

Relative Error% =
|cPred − cActual|

cActual

× 100 (4.10)

The corresponding correlation plots are shown in Figure 4.7 and 4.8 for ethanol

and methanol, respectively. The correlation plots at 50 ◦C, 45 ◦C, and 35 ◦C are not

shown. Because only three samples were collected at those temperatures, there were

not enough spectra to obtain a representative result.

It can be observed that at lower concentrations (e.g., below 1000 ppm-m),
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the estimated concentrations correlate better with the reference values than at larger

concentration levels. The SEP value indicates that, the higher the temperature dif-

ference between the blackbody and sample, for example at background temperatures

of 40 ◦C and 5◦C, the better the prediction performance. This conclusion is expected

on the basis of how temperature contributes to the spectral intensities observed. Ac-

cording to Planck’s function, the spectral intensity is primarily dependent on the

temperature. In a larger temperature difference scenario, analyte and background

information can be distinguished better. In addition, the methanol predictions were

generally more accurate than those for ethanol. This could be because the spectral

feature of methanol at around 1040 cm−1 is sharper than ethanol.

From the variations in estimated background temperatures and the RMS noise

values, the data were not very stable among samples and between sample replicates.

In the estimation of the background temperatures, single-beam spectra were used.

The inconsistency of the observed radiance intensities at different wavenumbers can

potentially induce bias in the background temperature estimation and thereby affect

the quantification of the sample. For example, Figure 4.9 shows the replicate spectra

for one of the ethanol samples collected on day 2. It can be observed that for the

replicates of a sample, the spectral intensities between 700 and 800 cm−1 are consis-

tent. However, the signal starts to deviate from 800 to 1400 cm−1. Meanwhile, the

temperature differences between sample and background in the laboratory data are

low. The maximum temperature difference is around 18 ◦C. The analyte information

superimposed on the background spectra is relatively weak for these data.



107

In terms of the field data results, Table 4.7 lists the simulation results in terms

of the estimated background and analyte temperatures and the corresponding SEC

and SEP values at different stack temperatures on each day. Also listed are the median

% relative errors. The correlations between predicted analyte concentrations and

reference values are plotted in Figures 4.10, 4.11, and 4.12 for the ethanol, methanol,

and mixture releases, respectively.

The calibration errors in this study were much lower than the prediction errors.

The simulated calibration data are very stable, because no variation information is

added manually except the background temperature fluctuation. However, collected

outdoors, the gas releases are subject to be influenced by changes in environmental

conditions and the data collection can be affected by instrumental drift. As con-

cluded with the laboratory data results, the prediction performance also depends on

the temperature difference between background and sample. In the field data collec-

tion, the background temperatures were much lower than the analyte temperatures.

The larger difference between analyte and background can potentially lower the effect

of inaccurate background temperature estimation. Meanwhile, from a hotter stack,

a higher analyte temperature can be obtained, and thereby more radiance can be

emitted by the analyte. Consequently, the analyte signal is stronger and better pre-

diction results are made possible. For the mixture releases, the ethanol predictions

were better than those for methanol according to the SEP values. However, from the

correlation plots, bias in the predictions can be observed and methanol was mostly

under estimated. Such results could be caused by interference from the presence of
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ethanol.

In comparison of the laboratory and the field results, similar conclusions can

be obtained in terms of the temperature and analyte. However, the SEP values of

the laboratory data are higher than those of the field data, primarily because of the

larger concentration range studied.

4.5 Conclusions

In this chapter, a simulation method for calibration in passive FT-IR remote

sensing was successfully developed. Obtaining calibration information in remote sens-

ing measurements is challenging, because the background is unstable and data col-

lection is labor intensive and expensive. The simulation strategy investigated in this

study can lower the cost in collecting calibration data and mimic the prediction data

by measuring or estimating key parameters that influence the data.

The laboratory and field data were studied with similar simulation procedures.

Because of the experimental setup, both emission and absorption spectral features of

the analytes were obtained from the laboratory data, while only the emission mode

was available for the field data. The prediction performance was better when higher

temperature differences between sample and background were obtained.

Based on the temperature information obtained from the collected sample or

the experimental conditions, the calibration data can be synthesized for future pre-

diction. Because the calibration model is built with the single-beam spectra, no back-

ground spectra are needed in this method. In this work, the only required background
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data collection was the measurement of spectra at two blackbody temperatures for

the purpose of calculating the instrumental response and self-emission parameters

needed for the spectral synthesis.

However, to make this method work practically in the field, a stable sample

release is required to obtain the temperature information of both the background and

sample. Similarly, if the environmental conditions change, additional data collection

is required. But as long as the temperature information is obtained, calibration

data can be generated very quickly. This makes it possible to have a large block of

calibration data without actual data collection. Finally, it is important to put the

prediction performance of the described methodology into proper context. Relative

errors of 20% might be unacceptable in a laboratory analysis but could be extremely

informative and valuable in a field monitoring application where currently there is no

simple method to obtain quantitative information from a released gas. Furthermore,

the methodology described here could be adapted to applications where instead of a

precise concentration estimate, a simple yes/no answer is desired regarding whether

an emission exceeds a threshold limit that signals a gross error or equipment failure.
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Table 4.6. Prediction Results for Laboratory Data

(a) Ethanol

TBlackbody SEP of Ethanol Relative Error No. of Spectra
(◦C) (ppm-m) (%, Median) (Used/Original)

40 52 9.1 12/16
30 117 22.4 10/16
15 234 18.7 8/16
10 257 17.7 10/16
5 172 17.6 11/16

(b) Methanol

TBlackbody SEP of Methanol Relative Error No. of Spectra
(◦C) (ppm-m) (%, Median) (Used/Original)

40 27 60.9 8/12
30 130 54.7 9/12
15 147 46.4 10/12
10 101 32.5 10/12
5 98 18.1 10/12

Table 4.7. Prediction Results for Field Data

Day Analyte TStack TBackground TAnalyte SEP Relative Error
(◦C) (◦C) (◦C) (ppm-m) (% Median)

1 Ethanol
175 33.6 ± 4.3 120 49.3 22.1
200 43.1 ± 0.2 117 28.0 11.7
150 27.0 ± 0.3 120 31.3 31.3

2 Ethanol 175 32.8 ± 1.6 111 49.4 23.2

3 Ethanol 200 24.1 ± 0.1 119 23.3 13.8
150 21.5 ± 0.3 102 46.5 22.5

4 Methanol
175 16.6 ± 0.3 154 24.4 15.8
200 10.3 ± 0.2 162 17.8 12.5
150 8.5 ± 0.2 131 77.0 30.7

5 Ethanol/Methanol 175 17.1 ± 0.3 164 27.5/41.0 8.6/18.0
Methanol 9.4 ± 0.5 140 21.1 8.9

6 Methanol 175 40.6 ± 0.7 144 18.3 8.9
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(B) Field (Blue) and Simulated Spectrum (Red) of Methanol

Figure 4.5. Example of experimental (blue) and simulated (red) spectra. (A) Labo-
ratory spectra of methanol. The blackbody temperature was 5 ◦C. The concentration
was 880 ppm-m. (B) Field methanol spectra. The stack temperature was 175◦C. The
concentration was 180 ppm-m.
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Figure 4.6. Estimated background temperatures for laboratory data at each black-
body temperature. Each bar shows the estimated background temperature based
on the obtained replicate spectrum. The horizontal line across the bars shows the
corresponding blackbody temperature.
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Figure 4.6. Estimated background temperatures for laboratory data at each black-
body temperature. Each bar shows the estimated background temperature based
on the obtained replicate spectrum. The horizontal line across the bars shows the
corresponding blackbody temperature
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Figure 4.7. Correlation plots of predicted and reference concentrations for ethanol
predictions of laboratory spectra at each blackbody temperature with the PLS model.
The spectral range was 1150 – 950 cm−1 with two PLS factors.
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Figure 4.8. Correlation plots of predicted and reference concentrations for methanol
predictions of laboratory spectra at each blackbody temperature with the PLS model.
The spectral range was 1150 – 950 cm−1 with two PLS factors.
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Figure 4.9. Two replicate spectra of a laboratory ethanol sample collected on day 2
(concentration = 1181.9 ppm-m). The spectral intensities between 700 and 800 cm−1

are consistent, but the intensities begin to deviate from 800 cm−1. Variation in the
single-beam intensities is a reflection of instability in the experimental measurement.
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(A) Day1 175◦C SEP = 56.3 ppm-m
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(B) Day1 200◦C SEP = 28.0 ppm-m

50 100 150 200 250 300

50

100

150

200

250

300

Reference Ethanol (ppm−m)

P
re

d
ic

te
d

 E
th

a
n

o
l 
(p

p
m

−
m

)

(C) Day1 150◦C SEP = 31.3 ppm-m
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(D) Day2 175◦C SEP = 49.4 ppm-m
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(E) Day3 200◦C SEP = 23.3 ppm-m
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(F) Day3 150◦C SEP = 46.5 ppm-m

Figure 4.10. Correlation plots for ethanol predictions with field spectra on each day
with different stack temperatures using the PLS model based on synthetic calibration
spectra. The spectral range was 1150 – 950 cm−1 with two PLS factors.
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(A) Day4 175◦C SEP = 24.4 ppm-m
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(B) Day4 200◦C SEP = 17.8 ppm-m
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(C) Day4 150◦C SEP = 77.0 ppm-m
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(D) Day5 175◦C SEP = 21.1 ppm-m
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(E) Day6 175◦C SEP = 18.3 ppm-m

Figure 4.11. Correlation plots for methanol predictions in field spectra on each day
with different stack temperatures using the PLS model based on synthetic calibration
spectra. The spectral range was 1100 – 950 cm−1 with two PLS factors.
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(A) Day5 175◦C SEP = 27.5 ppm-m Ethanol
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(B) Day5 175◦C SEP = 41.0 ppm-m Methanol

Figure 4.12. Correlation plots for ethanol (A) and methanol (B) predictions for
releases of mixture samples on Day 5 at a stack temperature of 175 ◦C using the PLS
model based on synthetic calibration spectra. The spectral range was 1150 – 950
cm−1 for ethanol and 1100 – 950 cm−1 for methanol. Both models used three PLS
factors.
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CHAPTER 5
CALIBRATION AND UPDATING STRATEGY BASED ON

PARTICLE SWARM OPTIMIZATION OF DIGITAL FILTERING AND
PARTIAL LEAST-SQUARES MODEL PARAMETERS:

APPLICATION TO CONTINUOUS MONITORING OF GLUCOSE BY
NEAR-INFRARED SPECTROSCOPY

5.1 Introduction

With improvements in instrumentation and data analysis techniques, NIR

spectroscopy has gained increasing acceptance in analytical chemistry. It is particu-

larly used for quantitative measurement of chemicals with organic functional groups

such as C-H, O-H and N-H. Near infrared measurements require little or no sample

preparation, can be compatibly used with aqueous samples, and are simple, fast and

nondestructive. The technique has found widespread application in pharmaceutical,

petroleum, food, agricultural, and clinical analysis.

Significant research efforts have been directed to the development of continuous

monitoring based on NIR spectroscopy.18,91–93 Near infrared spectroscopy is attrac-

tive for continuous monitoring applications because of its nondestructive nature and

its compatibility with the aqueous sample maxtrixes often encountered in industrial

processes.94–97

For a continuous monitoring application in an industrial setting, the rugged-

ness of the instrumentation is of primary importance. While a Fourier transform (FT)

spectrometer might be the instrument of choice in a laboratory setting, the presence

of moving parts in the interferometer may limit the ruggedness and portability of the
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instrument for a continuous monitoring application in a non-laboratory setting. In

this case, a filter-based instrument is attractive because it can be designed without

moving parts and has the potential to be constructed with a smaller footprint. To

maintain the required optical performance, however, the filter-based instrument must

achieve the same potential spectral S/N ratio and optical throughput that would be

obtained with a conventional laboratory spectrometer such as an FT instrument. In

this chapter, a filter-based spectrometer constructed with an acousto-optic tunable

filter (AOTF) was employed in the spectral collection.

As introduced in Chapter 2, the AOTF is an all-solid state, electronically

driven device that uses the acousto-optic effect to diffract propagating light through

an anisotropic crystal bonded with acoustic transducers. The incident light is diffracted

according to the refractive index from the acoustic wave launched into the crystal.

Changes in the acoustic wave alter the diffraction properties of the optical material.

Consequently, wavelength selection is made. The acoustic frequency can be changed

at electronic speeds, thereby enabling a fast wavelength scan.

The principal drawback of NIR measurements is the occurrence of weak spec-

tral features that are also broad and highly overlapped. Any quantitative calibration

must be based on the information from multiple wavelengths, thereby requiring multi-

variate modeling to be performed. The partial least-squares (PLS) regression method

was applied in this chapter to implement quantitative calibration models.

One of the consequences of the requirement for multivariate calibration models

is the necessity for estimating several model coefficients. The more coefficients that
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are required in the model, the greater the likelihood that the model will go out

of calibration at some time in the future. This degradation in the calibration can

occur because of variations in the instrumental response (i.e., “instrumental drift”),

changes in physical parameters associated with the data collection (e.g., temperature),

or chemical changes in the sample matrix. The degradation potentially gets more

serious with increased time between the collection of the calibration data used to

build the model and the subsequent collection of spectra to which the model will be

applied.

To address such problems of calibration instability, an obvious solution is to

completely recalibrate the model, thereby incorporating any new spectral features

that have arisen in the data. However, this approach is time-consuming, expensive

and not compatibly used in real-world continuous monitoring applications. A more

workable strategy involves simply updating the calibration model or employing data

preprocessing methods that serve to remove the effects of any new sources of spectral

variation.

Calibration model updating strategies attempt to incorporate new features

of the prediction data into the calibration model without performing a complete

recalibration.84 Usually a small set of updating samples is collected to guide the

remodeling or optimization of the calibration model. It may be possible simply to

acquire spectra of a single blank sample to add to the previous calibration spectra,

followed by recalculation and reoptimization of the model.98

In terms of methods for data preprocessing, signal processing techniques have
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been widely studied for use in the removal of spectral variation that could negatively

affect calibration and prediction performance.43,45,59,99 In this chapter, digital filtering

methods are examined for use in this application.

If one considers the combined tasks of (1) multivariate modeling, (2) data

preprocessing and (3) any necessary model updating, the issue of parameter opti-

mization becomes of paramount importance. Each of the three tasks noted above

has a requirement for optimization of parameters inherent to the method. Unless a

global optimization strategy is implemented, there is no guarantee that a truly opti-

mal solution has been found. For example, the selection of which spectral wavelength

points to include in the multivariate model may be dictated by the characteristics of

the preprocessing method chosen.

One optimization approach involves testing all combinations of a selection

of key parameters involved in the three modeling tasks outlined above. This “grid

search” strategy is only practical if the number of parameters and the number of

levels of the parameters needed to be evaluated is small. This method is not realistic

for multiple-step calculations, especially when the preprocessing step (e.g., digital

filtering) has a large number of parameter combinations. In this research, an alterna-

tive method, particle swarm optimization (PSO) is performed to select the optimal

parameter set for both a preprocessing digital filter and the multivariate model.
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5.2 Experimental

5.2.1 Data Set Design and Sample Preparation

The spectral data used in this study were acquired by our collaborators at ASL

Analytical, Inc. Two sets of four-component mixture solutions were prepared through

the use of a flow system based on a set of custom computer-controlled peristaltic

pumps. The first set of sample solutions contained glucose (≥99 %, Sigma-Aldrich

Co., St. Louis, MO), sodium L-lactate (99%, Sigma), glycine (≥98.5%, Sigma) and

L-lysine (≥98%, Sigma). This set of data is termed Group 1. The other set (Group

2) of four-component sample solutions consisted of glucose (Sigma), sodium L-lactate

(Sigma), urea (Sigma) and creatinine (Sigma).

All samples were prepared in a pH 7.4, 0.1 M phosphate buffer solution.

The buffer solution was prepared by dissolving an appropriate amount of NaH2PO4

(Sigma) in reagent grade water purified from a water purification system and titrating

to pH 7.4 with 50% w/w NaOH (Sigma). The stock solution of each component was

prepared by weighing an appropriate amount of each constituent and diluting with

buffer. The concentration of the stock solution for each constituent was 60 mM.

All the mixed solutions were obtained by pumping the stock solution of each

component at a certain rate and mixing with buffer solutions to get a specific concen-

tration for each constituent. The flow rate through the sample cell was 1.5 mL/min.

The rate of each pump was varied to obtain the desired mixture compositions. The

concentration of each component in the mixtures was randomly generated and the

range was from 1.0 to 30.0 mM. For Group 1, the correlation coefficients computed
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Figure 5.1. Concentration correlation plots between glucose and the other three
components for all samples in Group 1.

between pairwise combinations of the concentration profiles of the constituents were

all below 0.1. Figure 5.1 displays correlation plots between the glucose concentrations

and the concentrations of the other components. The randomly scattered points im-

ply that the correlations between these components were minimal. Analogous results

were obtained for Group 2.

5.2.2 Instrumentation and Apparatus

All of the spectra were collected with a custom AOTF-based spectrometer.

Figure 5.2 shows the schematic diagram of the instrumental setup. The light source
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was provided by a 12 W tungsten-halogen lamp. An optical cell composed of Teflon

tubing with a path length of 1.3 mm was used for sample flow. In the AOTF, a TeO2

crystal and a radio frequency (RF) synthesizer (Brimrose model TEAF5-2.0-2.5-EH

system, Brimrose Corp. of America, Sparks, MD) with a 5 mm2 optical aperture

were used to provide wavelength tuning from 2000 to 2640 nm (3800 to 5000 cm−1).

There was a thermoelectric control unit installed to control the crystal temperature.

A beam splitter was applied to divide polarized light passed through the AOTF

into sample (90%) and reference (10%) beams. The intensities of the light beams

passing through the sample and the open-beam reference channel were detected by

two-stage thermal electrically cooled InGaAs detectors (Teledyne Judson Technolo-

gies, Montgomeryville, PA) coupled with a low-noise power supply and an integrated

pre-amplifier. The detected signals were then transferred to a computer through a

16-bit analog-to-digital interface board (National Instruments Corp., Austin, TX).

A microcontroller (PIC16F877 microchip) running at 20 MHz on a custom

circuit board was used to connect the computer with the AOTF for controlling the

signal generation. The AOTF was driven by a signal synthesizer capable of a clock

rate of 300 MHz (Analog Devices AD9852 DDS) with an operation of chirp mode for

spectral collection. The output was then amplified with a 4-W power amplifier (In-

traAction model PA-4, IntraAction Corp., Bellwood, IL) operating over a frequency

range of 10 – 100 MHz.
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5.2.3 Spectral Data Collection and Partitioning

The spectra in Group 1 were collected continuously over two days. Before

collecting sample spectra, buffer solution was flowed through the cell and a total

of 1551 buffer spectra were measured. To make a sample, each stock solution was

pumped at an appropriate rate and the solutions were mixed in a mixing chamber

equipped with a magnetic stirrer. The mixed solution was then flowed through the

sample cell. For each sample, approximately 10 minutes were taken to collect spectra

continuously. Each spectrum was based on a 15-second co-add, corresponding to 600

scans of the AOTF. At the same time, an air reference spectrum was collected for

each sample spectrum.

It usually took four minutes for the composition of the sample to stabilize after

changing pump speeds. Spectra collected during this time period were discarded and

those from the later six minutes were used. According to the scan rate of 15 seconds

per spectrum, there were 24 spectra usable for each sample. With the co-addition

of every eight consecutive spectra, each sample had three replicate spectra. Buffer

spectra, which were collected before the sample collection, were similarly averaged

and used as backgrounds in the calculations described below. In total, 168 samples

were collected for the short-term study. The first 126 samples (75%) were used to

build calibration models, and the last 42 samples were used as prediction data for

model validation. Figure 5.3 shows the glucose concentration profile of the samples

in Group 1.

The spectra collected in Group 2 were collected over more than one month for
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Figure 5.2. Schematic of AOTF-based spectrometer used in collecting spectra.
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Figure 5.3. Glucose concentration (mM) profile of samples in Group 1. Circles rep-
resent the calibration points and crosses are prediction data points.
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Table 5.1. Sampling protocol of data collection of samples in Group 2

Data set Days/Weeks Numbers of Mixed Pure Buffer
after Calibration Samples Sample Component

Calibration 1, 2 168 All mixed samples

Pred 1 8/1 26 16 8 2
Pred 2 13/2 28 20 4 4
Pred 3 20/3 28 20 4 4
Pred 4 27/4 28 20 4 4
Pred 5 30/4.5 21 18 0 3
Pred 6 50/6 15 12 0 3

the purpose of a stability test. As with the data collection in Group 1, each sample

solution was measured for 10 minutes and spectra from the first four minutes were

discarded. Every eight spectra were co-added across the last six minutes and three

replicate spectra were obtained for each sample. The samples in the calibration set

were collected continuously over two days. Prediction data sets were then measured

over the following 43 days. The first prediction set was collected seven days after

the calibration. There were in total 3458 buffer spectra collected before and after

the collection of the calibration samples. In the prediction data sets, some of the

samples contained mixtures and some were pure components. Buffer spectra were

also counted as samples. Table 5.1 shows the summary of the sampling protocol used

in the collection of spectra in Group 2.

The AOTF spectra were collected over 3800 to 5300 cm−1 with a point spacing

of 0.57 cm−1. Each point in the spectrum was the mid-point of a square-shaped

spectral band-pass filter, which was approximately 24 cm−1 in width. One single-

beam spectrum was obtained in 15 ms by tuning the center position of the filter
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rapidly.

5.2.4 Calculations

All computational work was performed under MATLAB (version 7.4, The

MathWorks, Inc., Natick, MA) running on a Dell Precision 670 workstation (Dell

Computer Corp., Austin, TX) operating under Red Hat Enterprise Linux WS (Red

Hat, Inc., Raleigh, NC). The digital filtering and PSO calculations were implemented

with the Matlab signal processing toolbox (version 6.7, The MathWorks, Inc.) and

the public-domain Particle Swarm Optimization Toolbox developed by Brian Birge

(version 2.5) and available through the file exchange maintained by The MathWorks,

Inc.

5.3 Results and Discussion

5.3.1 Data Characterization

In this experiment, for both groups of data, glucose was the analyte of interest.

There are three combination bands present in the 5000 – 4000 cm−1 region. The broad

band around 4700 cm−1 corresponds to an O-H combination absorption. The other

narrower bands at 4400 cm−1 and 4300 cm−1 are from C-H stretch-bend combinations.

The glucose absorption bands are much weaker than those of the other components

and highly overlapped. Therefore, the qualification and quantification of glucose in

such an environment becomes challenging.

The noise level among replicate spectra can be used to evaluate the quality of

the collected data. With each group of three sample single-beam spectra, three noise
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spectra in absorbance units (A) were computed by taking the ratios of each possible

combination of spectra (1 vs. 2, 1 vs. 3, 2 vs. 3):

Ai = −log
Prep1,i
Prep2,i

(5.1)

In Eq. 5.1, Prep,1 and Prep,2 denote the intensity at point i of the single-

beam spectra from a given pair of replicates. The resulting absorbance spectrum is

termed a ‘100% line’. In theory, the 100% transmittance profiles of each two replicate

pair should have no instrumental noise. However, due to the instrumental variation

or temperature changes occurring during the data collection, the 100% lines always

have fluctuations and the curve can be modeled by a polynomial function.

The noise value can be estimated by the root-mean-squared (RMS) error of

the deviations between a fitted quadratic function and the computed 100% lines of

the three replicate noise spectra. Eq. 5.2 shows the calculation of RMS error, where

dk represents the deviation among the spectrum at the kth spectral frequency, n is the

number of wavelengths (or wavenumbers) involved in the calculation, df represents

the loss of degrees of freedom in the polynomial fitting (df = 2 for a quadratic fit),

and “+ 1” indicates the loss of one degree of freedom corresponding to the use of an

intercept term in the model.

RMS =

√ ∑n
k=1 d

2
k

n− (df + 1)
(5.2)

In this study, the spectral range from 4500 to 4300 cm−1 was used for the
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quadratic fitting and RMS error calculation. As introduced previously, this range

covers the important C-H combination band of glucose at 4400 cm−1, which can be

used for glucose qualification and quantification.100 All of the estimated errors were

computed in micro-absorbance units (µAU).

For each calibration and prediction data set, the RMS error values were esti-

mated for each sample with the three replicates. The pooled noise value was calculated

for each data set by taking the mean of the RMS noise values for all samples. The

RMS noise of the buffer spectra collected 10 minutes before sample collection was

also calculated. Panel A in Figure 5.4 plots the RMS noise values of both sample

and buffer spectra of Groups 1 and 2. The crosses represent the noise of the buffer

samples, and the circles are the noise values of the sample spectra. The mean RMS

noise of the sample spectra was around 10 µAU, and that of the buffer spectra was

around 25 µAU. In collecting the data in Group 2, the light source was changed.

There was a new bulb holder installed and the signal was maximized by adjusting the

alignment. Therefore, from panels B and C in Figure 5.4, the RMS noise of Group

2 improved because of an increase in the light throughput. The noise values of both

buffer and sample spectra were around 6 µAU.

In the flowing system used in the data collection, solutions were pumped from

the stock solution into the sample cell. The occurrence of air bubbles in the flow

cell is common and required the use of a detection algorithm to identify and remove

spectra altered by the presence of bubbles. Figure 5.5 depicts the comparison of a

single-beam spectrum with an air bubble in the sample cell and a normal single-beam
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(A) RMS of buffer and sample spectra of Group 1
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(B) RMS of buffer spectra of Group 2

0 50 100 150 200 250 300
0

2

4

6

8

10

12

Sample Sequence

R
M

S
 N

oi
se

 v
al

ue
 (µ

A
U

)

(C) RMS of sample spectra of Group 2

Figure 5.4. RMS noise values of sample and buffer spectra. A. Buffer and sample
RMS noise values of data in Group 1 (cross - buffer, circles - sample). B. Buffer RMS
noise values for data in Group 2. C. Sample RMS noise values for data in Group 2.
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spectrum collected without the presence of air bubbles. Comparison of the spectra

shows clearly that the single-beam intensities are altered in the regions below 4200

cm−1 and above 4800 cm−1 when air bubbles are present. This is caused by the larger

light throughput in these regions for air than for water.

To identify spectra contaminated by air bubbles, the ratio of the single-beam

intensities at 4570 cm−1 and 4100 cm−1 was calculated for each spectrum. This ratio

decreases when air bubbles are present.

Figure 5.6 plots the ratio values of all spectra collected in Group 1. For most

of the spectra, the values were above 65. For 33 spectra, the values were lower than

50. These abnormal spectra were removed with a threshold value at 60 before the

calculation of RMS noise values and co-addition of spectra for the construction of

replicates. The same procedures were taken for data collected in Group 2.

5.3.2 Data Analysis Strategy

In this chapter, a robust and stable calibration modeling method was imple-

mented. Due to the weak spectral bands and overlapped features, signal processing

(e.g., digital filtering) was employed to help isolate useful analyte information. With

the combination of digital filter design and calibration model development, parameter

optimization is crucial. A population based optimization method was investigated.

The raw data were collected at a point spacing of 0.6 cm−1. This corresponds

to ∼2000 points per spectrum over the full spectral range. Taking all of the points

in the data analysis is unnecessary and also increases the calculation load. In order
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to reduce time in calculation, all spectra were deresolved to around 4 cm−1 point

spacing. In the data collection, part of the incident light was directed to the air

reference after passing through the AOTF. Therefore, for each sample spectrum, an

air spectrum was obtained. The air reference coupled with each sample spectrum

can help monitor instrumental drift during the data collection. This data collection

strategy is potentially valuable for maintaining spectral stability during long-term

monitoring. There were also buffer spectra collected before and after the collection

of the sample spectra. In the data analysis, both buffer and air spectra were taken

as the background in the evaluation of potential calibration models.

Digital filtering was applied in the data preprocessing procedure. By Fourier

analysis, a spectrum can be modeled as the sum of sine and cosine functions across

a finite bandwidth. Given this frequency-dependent model, a bandpass filter can

be used to suppress signals corresponding to component frequencies that are not

associated with useful spectral information.

For example, random noise changes rapidly and thus consists of a series of

narrow signals. The Fourier analysis of such signals requires frequencies across the

total bandwidth of the data. Spectral variation associated with wide features (e.g.,

baseline drift) requires fewer frequencies to model, and these are concentrated in the

lower-frequency portion of the bandwidth. Thus, by applying a bandpass filter to the

data which passes only intermediate frequencies, much of the spectral information

associated with both very wide and very narrow features can be removed. This has

the dual benefit of helping to suppress both baseline variation and random noise.
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Figure 5.5. Comparison of single-beam spectra of samples with air-bubbles (red) and
those without air-bubbles (blue).
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beam spectra in Group 1. The red line shows the threshold value of 60 used to identify
spectra altered by the presence of air bubbles.
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One of the classical infinite impulse response (IIR) filters, the Chebyshev Type

II bandpass filter, was investigated in this study. Compared to finite impulse re-

sponse (FIR) filters, IIR filters can achieve an excellent approximation to the desired

frequency response with a much lower filter order, thereby requiring the use of fewer

spectral points in the application of the filter. This advantage arises because the

IIR filter uses both unfiltered data points, as well as previously filtered points, in

the estimation of the filtered intensity of a given data point. The Chebyshev type

II filter design was chosen because it provides a fast roll-off between the passband

and stop-band, consequently leading to precise and flexible control of the frequency

output of the filter.

The filtered spectra were used as input to the PLS algorithm. The number

of latent variables (factors) is the principal control parameter associated with the

PLS method, specifying the number of levels of decomposition of the input spectral

data matrix. The PLS method usually gives a better calibration performance if more

factors are added. This is because additional added variables will always be able to

explain more variation in the calibration data that is being used to derive the model.

However, the variance explained by the additional factors could be noise or other

irrelevant information that may not necessarily be present in the prediction data to

which the developed model will be applied. This problem is termed over fitting.

If those factors are included in the model, since the model has been skewed to the

calibration data, the prediction could be biased or ruined. Therefore, to avoid over

fitting, an F-test or other statistical test is performed to assess the significance of
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adding new factors to the model.

In order to select the optimum calibration model, an internal validation method

was used in this study. The whole calibration data set was divided into calibration

and monitoring sets. From the entire calibration set, 75% was randomly selected as

the calibration subset used to build the model, and the remaining 25% was taken as

a monitoring set for model validation and optimization. The subsets were selected

dynamically to avoid the dependence on how the monitoring data were selected. In

optimization, three random drawings of the subsets were tested and the pooled error

values were used in calculation of the fitness scores.

5.3.3 Implementation of Particle Swarm Optimization

In optimization, with the combination of a Chebyshev type II band-pass filter

and PLS regression, there are a huge number of parameter combinations applicable

to the model. Because of the tedious process and large scale of the calculation, a con-

ventional grid search, which requires evaluating all possible parameter combinations

to find the optimum solution, is not practical. An iterative numerical optimization

method is therefore necessary. In Chapter 3, the PSO algorithm was introduced.

Next, how the PSO was implemented with the data analysis strategy will be de-

scribed.

The first step of PSO is generating the initial population (swarm). Each

particle in the population is defined by two vectors, position ~xi and velocity ~vi. The

dimensionality of the particles depends on the number of parameters being optimized.



139

In the filter design, the Chebyshev type II bandpass filter requires four parameters:

(1) the filter order, (2) the desired stopband attenuation, (3) the high-frequency cutoff

for the filter bandpass, and (4) the corresponding low-frequency cutoff. For the PLS

regression step, the spectral range (i.e., the starting and ending points of a contiguous

spectral range) should be optimized. Taken together, this defines a six-dimensional

particle.

Because the numerical range of the parameters varies significantly, an integer

mapping was used to represent all variables. For example, the spectral range was

studied from 4900 cm−1 to 4200 cm−1, but the magnitude of the filter order was from

1 to 6. In optimization, for the range from 4900 cm−1 to 4200 cm−1, if the decrement

of the spectral wavenumber is 10 cm−1, there are 71 possible values in total. To make

the integer map, all of the values were assigned to integers from 1 to 71 instead of

the wavenumber values themselves. The stopband attenuation was studied from 20

to 100 dB at a step of 5 dB. The frequency cutoff was normalized between 0 and 1,

and was investigated from 0.01 to 0.99 with an increment of 0.01.

PSO moves to the evaluation step after the initial population is defined. In

this work, 50 particles comprised the population. The purpose of the evaluation step

is to locate the particles in the search space in terms of their suitability as solutions

to the optimization problem. Each particle is evaluated by the fitness function and a

fitness score is obtained.

The fitness function is the key to the optimization. It determines the validity

of the ranking of the possible solutions to the optimization problem. The fitness
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function used in this study is shown in Eq. 5.3.

R = SEC + SEM + 2|SEC− SEM| (5.3)

In this equation, SEC is the standard error in concentration of the calibration

data and SEM represents the corresponding error for the monitoring set. In comput-

ing the value of R that represents the fitness of the particle, the number of latent

variables used in the PLS model was also evaluated. When a given particle was tested

(i.e., a set of parameter values is evaluated), PLS models were built with all latent

variables over the range of 6 to 12. Each model produced a value of SEC and SEM.

An F -test at the 95% confidence level was then performed to identify the smallest

number of latent variables that produced a value of SEM that was not statistically

different from the smallest SEM. This value of SEM along with the corresponding

value of SEC was used to compute R.

The last term in the fitness function evaluates the similarity of the calibration

and prediction results. If the calibration and monitoring errors (i.e., SEM and SEC)

are inconsistent, a penalty is applied to the fitness score. This helps to exclude the

case in which the model is skewed toward the calibration results, thereby sacrificing

performance in prediction. Particles with lower fitness scores are considered to be

better solutions.

After the evaluation of the initial population, the current location of each par-

ticle is assigned as pbest and the fitness score is recorded. All fitness scores obtained

from the population are compared. The position with the best score in the entire
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swarm is stored as gbest. In PSO, the pbest and gbest are important because they

guide all particles moving through the search space.

The third step of PSO is to update the positions and velocities of all parti-

cles. All particles move to their new positions according to the changed velocities

in the search space. The equations and diagram of the updating procedure have

been introduced in Chapter 3. For one particle, a new velocity vector is calculated

based on its current position, the distance and direction to its pbest and the gbest,

respectively. The new position is determined by the current position and the new

velocity. In this study, the control parameters, a, b1, and b2 were selected according

to Trelea’s study.101 The inertial constant, a, was 0.6, and the values of the attraction

coefficients, b1 and b2, were both 1.7.

After all particles are updated, PSO moves back to reevaluate the particles

at their new positions (i.e., the updated solutions to the optimization problem). A

new set of fitness scores is obtained. For each particle, the current fitness score is

compared with its pbest and an updated pbest is recorded. All fitness scores are

compared together with the previous gbest to obtain the current gbest.

The evaluation and updating steps are repeated for a certain amount of it-

erations or until the optimal solution (i.e., a specified target fitness score) has been

found. In this study, because the monitoring data set was dynamic, a targeted op-

timum fitness score could not be defined. Initial experiments suggested that little

improvement in the fitness score was obtained after 80 iterations. Accordingly, 100

was set as a safe value for the maximum number of iterations.
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The occurrence of local optima is a general problem in numerical optimization,

in which the solution is only optimal within the local neighborhood instead of within

the entire search space. To address this issue, ten different initial populations were

generated to obtain 10 optimal solutions. From the 10 solutions, the best set of

parameters was selected to build the final calibration model. Prediction was then

performed with the parameters corresponding to the best calibration.

5.3.4 Optimization Results for Short-Term Data

The short-term data were collected on two consecutive days. A total of 168

samples were obtained, and divided into calibration and prediction sets chronologi-

cally. The concentration profile has been shown in Figure 5.3. Both buffer and air

spectra were tested as backgrounds. The buffer background spectrum was the mean

spectrum from the last 10 minutes of collection before the first sample spectrum was

collected. As shown in Figure 5.4, the first several spectra at the beginning of the

10 minutes had relatively high RMS noise values. These spectra were discarded in

calculating the mean spectrum. An air background spectrum was available for each

sample spectrum. Air spectra potentially contain more information about the sta-

tus of the instrumental drift than buffer spectra because they are matched to the

individual sample spectra.

Figure 5.7 shows single-beam spectra of sample, buffer and air. In the upper

panel, the red line represents the sample spectrum and the blue line is the buffer

spectrum. The shapes of the two spectra are similar. The intensity difference is
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Table 5.2. Summary of prediction results with buffer and air as background

Background Spectral Range Number of LVa SEC SEP
(cm−1) (mM) (mM)

Buffer 4820 - 4220 10 0.184 0.190
Air 4870 - 4240 10 0.159 0.174

a Number of latent variables used in PLS models.

caused by the difference in transmission arising from the differing compositions of the

buffer and sample solutions. The lower panel plots the air spectrum, whose shape

is different from that of solution. In Figure 5.8, absorbance spectra of a sample are

plotted for the case in which buffer (upper) and air (lower) are used as the background.

When air is used as a background, the only recognizable features are the tails of the

large absorption bands of water centered near 3800 and 5200 cm−1. When buffer

is employed as the background, the water absorbance bands are largely subtracted,

uncovering the absorption features of the solutes.

Table 5.2 summarizes the calibration and prediction results with spectra using

buffer and air as backgrounds. Both backgrounds provide stable calibration and

prediction. As discussed previously, however, air spectra carry more information

about the instrumental variation. Therefore, both the calibration and prediction

errors with air as background are slightly lower, compared to those obtained with

buffer spectra.

Figure 5.9 shows correlation plots between the reference glucose concentra-

tions and the predicted values for the calibration (A, C) and prediction (B, D) data

sets when buffer (A, B) and air (C, D) were the backgrounds. The high degree of
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(B) Single-beam spectra of air

Figure 5.7. Single-beam spectra. (A) Single-beam spectra of sample (in red) and
buffer (in blue). (B) Air single-beam spectrum collected by the AOTF-spectrometer
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Figure 5.8. Absorbance spectra of a sample when using buffer (upper panel) and air
(lower panel) as the background
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correlation between the reference and predicted values in all four figures indicates

good prediction performance of this method when applied to short-term data.

Figure 5.10 displays the frequency responses of the digital filters applied to

buffer and air absorbance spectra and example spectra after application of each fil-

ter. After digital filtering, part of the spectral information has been removed. The

remaining spectra are potentially more related to the analyte feature. The procedure

of finding the appropriate frequency cutoffs and other parameters is highly dependent

on the fitness function employed with the PSO. In this study, both the calibration

and monitoring errors were taken into consideration. If another fitness function were

chosen, the optimization results could be different.

5.3.5 Optimization Results for Long-Term Data

Results from the short-term study indicate that this method could extract the

specific analyte information from the spectra. However, data in Group 1 were col-

lected only over two consecutive days. The way the data were divided, the prediction

set was collected immediately after the calibration data. Although the prediction set

was collected after the calibration set, the stability and robustness of this method are

not well proved.

For the purpose of continuous monitoring of the analyte of interest, usually a

long-term sampling protocol is needed. As mentioned in section 5.1, data in Group 2

were collected over two months for the model stability study. The calibration set was

first collected over two days, followed by six prediction sets collected in the following
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Figure 5.9. Correlation plots of predicted glucose concentrations versus reference con-
centrations obtained with the calibration model built with buffer and air absorbance
spectra. (A) Calibration correlation of buffer absorbance spectra. (B) Prediction cor-
relation of buffer absorbance spectra. (C) Calibration correlation of air absorbance
spectra. (D) Prediction correlation of air absorbance spectra.
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Figure 5.10. Frequency responses of filters applied to buffer (A) and air (C) ab-
sorbance spectra and their corresponding filtered spectra for sample spectra computed
with buffer (B) and air (D) as backgrounds.
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two months. The data collection and partitioning has been discussed earlier in section

5.1.3.

From the comparison results of buffer and air as backgrounds in the short-term

study, air absorbance spectra showed a better performance but the differences were

small. This comparison was also applied to the long-term data. Figure 5.11 depicts

the SEP and bias values obtained when air or buffer was taken as the background.

The bias value is the average difference between the predicted and reference concen-

trations. It shows clearly that, from a long-term point of view, although the buffer

spectrum could provide a stable background in some cases, it is highly variable. On

the other hand, the air spectrum, collected simultaneously with the sample spectrum,

seems to provide a more stable background. This result is expected, since air spectra

can monitor the instrumental variation in real time during the data collection. Drift

in prediction is still noted over time, however, indicating that the PLS model gradu-

ally goes out of calibration, producing an increasingly negative bias in the predicted

concentration.

5.3.6 Principal Component Analysis

Principal component analysis (PCA) was performed on the mean-centered

air-absorbance spectra before and after digital filtering. A principal component (PC)

score plot allows a convenient depiction of the distribution of the spectra across the

time span of the data collection. Figure 5.12 shows the comparison score plots.

In the unfiltered data, clear clusters of calibration and prediction data sets can be
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Figure 5.11. Compared SEP and bias plot of the prediction results with buffer or air
as the background. (A) shows the SEP values. (B) is the absolute bias value. Blue
bar: using buffer absorbance spectra; Red bar: using air absorbance spectra.
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observed. The prediction sets deviate from the calibration data over time, which

indicates that the information embodied in the calibration set cannot adequately

represent the prediction data. Higher SEP values are expected under these conditions.

After digital filtering, however, the calibration and prediction data are more scattered,

and blended much better, which indicates the calibration spectra are more similar to

the prediction spectra. The spectral variation not related to the analyte information

has been removed by digital filtering.

5.3.7 Calibration Updating Strategy

As noted in the discussion of Figure 5.11, degradation in prediction perfor-

mance is observed over time, even with the use of digital filtering. As the data

collection progresses, the PLS factors computed with the original calibration data are

no longer optimal. A model updating strategy is applied here to revise the model.

On each prediction day, buffer spectra were collected before the sample col-

lection. In the updating procedure, those buffer spectra were combined with the

original calibration data to form a new calibration set for each prediction day. The

buffer spectra are taken as “0” concentration calibration samples. Up to 48 buffer

air-absorbance spectra were added. On some days, fewer buffer spectra were collected

and were all added. The same parameter optimization was performed separately on

different prediction days, because the calibration set has changed. Figure 5.13 depicts

SEP values based on the optimization results corresponding to each prediction day,

as well as the corresponding bias values. By using the updating strategy, not only
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Figure 5.12. Comparison PCA score plots of all spectra before and after digital
filtering. (A) Before digital filtering. (B) After digital filtering. Blue: Calibration.
Red: Prediction 1. Green: Prediction 2. Purple: Prediction 3. Cyan: Prediction 4.
Magenta: Prediction 5. Black: Prediction 6
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the error of prediction has been improved, but also the consistent bias has been elim-

inated, especially on weeks 3, 4, and 4.5. However, for the last prediction data set,

the updating was not helpful. This could be because of the buffer spectra collected

on that day. From Figure 5.11A, the SEP value of this data set is over 4 mM when

using buffer as the spectral background. The large value indicates that the buffer

spectra did not perform well as backgrounds compared to the other data sets. When

using buffer as background, it removes some of the solution information (e.g., water

background). But in this data set, the expected effect is not evident. A similar PCA

study to that described in Section 5.3.6 was done to compare the updating results.

Figure 5.12 shows the score plot of the updated calibration set and the prediction set

before and after the signal processing. It can be observed that after digital filtering,

the first prediction set was blended well with the calibration data. But in the last

prediction set, the calibration and prediction data are still separated. This under-

scores that the digital filtering step can help to reduce the effects of spectral variation

with time but cannot overcome all such variation.

5.3.8 Comparison Results with PLS without Signal Processing

A grid search about the spectral range and the number of PLS factors was

performed to find the best calibration model without the use of digital filtering pre-

processing. In the grid search, the spectral range was selected over 4800 to 4200

cm−1. The spectral range varied from 200 to 600 cm−1 with a 20 cm−1 increment.

The moving step of the range was 5 cm−1. Meanwhile, the number of factors was
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Figure 5.13. Compared SEP and bias plot of the prediction results without and with
the updating. (A) shows the SEP values. (B) is the absolute bias value. Blue bar:
using air absorbance spectra; Red bar: with the updating strategy
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Figure 5.14. PCA score plots of the buffer updating results. (A) shows the result
before the digital filtering of prediction set 1, which was collected a week after the
calibration. (B) is the plot after digital filtering. (C) and (D) show the last prediction
set before and after digital filtering, respectively. In the subfigures, blue circles rep-
resent the original calibration data, red denotes the buffer spectra used for updating
the calibration model, and green indicates the prediction spectra.



156

also selected by the F-test. The maximum number of latent variables was 15. A

leave-10%-out cross-validation with consecutive blocks was applied to find the op-

timal spectral range and latent variables. The updating method was also studied

with PLS without digital filtering. Figure 5.15 shows the SEP and bias values of the

compared methods. Inspection of Figure 5.15 reveals that the first two prediction

sets perform similarly well with and without digital filtering and updating. Here,

the calibration and prediction data are sufficiently close that no filtering or updating

is beneficial. For the four later prediction sets, updating without filtering produces

erratic results (e.g., the best results in week 3 but far and away the worst results in

weeks 4 and 6. The static PLS model without filtering degrades by a factor of two

in SEP for the last four weeks and does not compete well with the combination of

filtering and updating in weeks 3, 4, and 4.5. Week 6 is the outlying case, as filtering

and updating fail to perform well, while the static PLS model maintains its degraded

performance (i.e., does not degrade further). Overall, however, the combination of

filtering with updating proves to be the best among the data processing strategies

tested.

5.4 Conclusions

The purpose of this study was to develop a filter design method to build

calibration models for continuous monitoring in a four-component flowing system.

The methodology was applied to both short- and long-term data collected with an

AOTF-based spectrometer.
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Figure 5.15. Compared SEP and bias plot of the prediction results without and with
signal processing. (A) shows the SEP values. (B) is the absolute bias value. In
both figures, the blue bars represent the PLS method, and cyan bars show the value
produced by PLS combined with the updating method. Yellow and red bars represent
the digital filtering results without and with updating, respectively.
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Buffer spectra collected before the sample collection and air reference spectra

collected simultaneously with the sample collection were compared for their utility as

background spectra. From the SEP values and the corresponding correlation plots,

for short-term prediction, there was no significant difference in background selection.

However, it was found that the air reference spectra worked more stably and reliably

than buffer spectra when applied to the long-term data (Group 2). While buffer

spectra could only contain the solution information before sample collection, the air

reference includes instrumental variation throughout the data collection.

A signal processing method was investigated to remove non-analyte variation

which could affect the robustness of the calibration model. A Chebyshev type II

bandpass filter was applied in a preprocessing step. With a PCA study performed on

the long-term data, the score plots before and after the signal processing proved the

positive effect of digital filtering. In quantitative analysis, an F -test after PLS regres-

sion was used to avoid over-fitting in calibration. The PSO method was employed in

parameter optimization for filter design and PLS regression. This population-based

optimization method helped reduce the large scale of the calculation and avoided the

tedious process of a large-scale grid search.

Lastly, in order to stabilize the calibration model for long-term monitoring,

a buffer updating strategy was studied. By adding the buffer spectra as calibra-

tion samples to the original calibration set, a new calibration set specified for each

prediction day was defined and followed by the same data analysis procedure. This

updating protocol helped improve prediction performance by lowering the bias be-
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tween predicted and observed concentrations.
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CHAPTER 6
SIGNAL PROCESSING METHODS FOR CONTINUOUS

BIOREACTOR MONITORING WITH AUGMENTED CLASSICAL
LEAST-SQUARES

6.1 Introduction

Process monitoring is an increasingly important topic in the field of moni-

toring and evaluation.102–104 In the chemical and pharmaceutical industries, a good

understanding of the manufacturing process is important in order to meet increasing

demands of safety, yields and reduced waste. For example, in pharmaceutical appli-

cations, controlling and mastering the different process phases enables constant drug

production quality, a decrease in the number of rejected batches and a shorter time

to market.105

In the chemical industry, the use of batch or semi-batch processes has be-

come popular to increase the adaptability of manufacturing facilities in constantly

changing situations. High-quality and value-added specialty chemicals (e.g., poly-

mers, biochemicals, food, semiconductors and agricultural chemicals) are commonly

produced by batch processing methods.105 In contrast to the operation of a continu-

ous process, a facility used for batch processing must be continually stopped, started,

and/or retooled each time the process is changed. This places extreme importance

on the consistency and reproducibility of the process and makes effective process

monitoring a critical requirement.

In both the chemical and pharmaceutical industries, analysis of key variables
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related to a manufacturing process often requires sophisticated chemical measure-

ments rather than simpler and more traditional physical measurements such as tem-

perature, flow rate, and pressure. The United States Food and Drug Administration

has recognized the value of process chemical measurements through the establishment

of their Process Analytical Technology (PAT) initiative.106

Process monitoring/analysis divides into five different classes according to the

sampling and transportation of the analyzed sample. These analytical approaches

are described as: (1) off-line, (2) at-line, (3) on-line, (4) in-line, and (5) noninvasive

methods.107

Off-line analysis involves manual sampling with transport to a remote labora-

tory where techniques such as chromatography or mass spectrometry are applied. An

at-line procedure is based on manual sampling with analysis conducted nearby (i.e.,

outside of a traditional laboratory). The analytical methodology employed is often

relatively simple. Examples are chemical paper tests or titrations. On-line analysis

is keyed by automated sampling and transportation to a nearby analyzer that can

be run unattended. On-line gas chromatography or various spectroscopic methods

can be employed. With an in-line procedure, the sampling interface is located in the

process line itself and there is no need for a separated sampling system. For example,

a pH probe or fiber optic spectroscopic probe could be inserted into a process pipe

or reactor.102 Finally, a noninvasive method can interrogate a process directly with-

out having to come into physical contact with the sample. An example noninvasive

method would be a reflectance measurement made through a window in a reaction
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vessel.

In this chapter, an in-line process analysis is implemented to monitor cell

growth and protein production in a bioreactor. Pichia pastoris, a methylotrophic

yeast, was employed. This type of cell has been successfully used in the expression

of a variety of heterogonous proteins. Additionally, Pichia pastoris also carries the

advantages of (1) ease of genetic manipulation and culture and (2) amenability to

growth to high cell densities.108–110.

The bioreactor run in this study is a three-stage process for the production of

foreign proteins from Pichia pastoris cells. In the first stage, the engineered strain

is batch cultured for biomass accumulation. This step uses a simple medium with

glycerol as the commonly used carbon source. The second stage involves a glycerol

feed transition phase. The biomass of the culture further increases at a limited growth

rate, and the cells are prepared for protein production. After the desired cell density

is achieved, the glycerol levels are allowed to deplete for a brief period and the cells

are starved. At the third stage, the methanol feed begins. Methanol is added to the

culture to induce the protein production, and the methanol concentration levels are

maintained while the targeted protein is expressed.

To monitor the cell growth and the production of the protein, the concentration

levels of the carbon sources are required to be controlled in a certain range. For

example, the glycerol concentration must be above 0 to insure the reproduction of

the cells, while the methanol concentration should be maintained between 3 g/L and

10 g/L during the third stage. A typical way to monitor the concentration is to
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take samples regularly (e.g., every hour) and obtain concentration estimates via a

reference method. This is a tedious procedure, however, given that typical bioreactor

runs can last for 3-8 days. Frequent monitoring requires a significant investment of

labor resources, including night shift labor.

In the work described in this chapter, a spectroscopic method is developed

to allow real-time continuous monitoring of the bioreactor process. As discussed

previously, NIR spectroscopy is a nondestructive method. The lower background

absorption from water in the NIR spectral region makes it possible to measure an

aqueous solution without further sample preparation. A tubing circulation system

can easily provide the sample introduction to the spectrometer and thereby enable a

continuous spectral collection for real time monitoring. In terms of the spectrometer

to use, a conventional laboratory Fourier transform (FT) IR spectrometer is expensive

and difficult to minimize in size. Additionally, the moving mirror in the interferom-

eter places limits on the ruggedness of the instrument for operation in an industrial

environment. By contrast, an instrument such as the filter-based AOTF spectrom-

eter described in Chapter 5 is potentially lower in cost and more compact than an

FT design. The all solid-state components of the AOTF instrument provide for a

rugged design. Meanwhile, the AOTF is capable of fast scanning over a relatively

wide spectral range. The device and theory involved in the AOTF spectrometer have

been introduced in Chapters 2 and 5.

A key element of effective process monitoring is the use of statistical methods

for analysis of data and decision-making.111 Multivariate analysis techniques from
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chemometrics can be applied to the analysis of the process data and can also assist

in the improvement of the process. The techniques utilized typically consist of mul-

tivariate modeling methods such as principal component analysis (PCA) and partial

least-squares (PLS) for use in building quantitative models for prediction of con-

centrations or properties related to the process being monitored.112,113 In addition,

techniques from statistical process control are used routinely for decision-making re-

lated to whether a process is within targeted specifications.114

When multivariate modeling techniques are applied to process monitoring,

a key question is how to acquire the required data for use in building the desired

models. The application of methods such as PCA or PLS to NIR spectroscopic data

typically requires the performance of a set of initial calibration experiments to collect

spectra and associated reference measurements for use in building models that will

be subsequently applied to spectra collected in the future. The experiments and

methodology described previously in Chapter 5 are representative of this process.

In the context of bioreactor monitoring, the analogous calibration measure-

ments would require one or more bioreactor runs to be performed during which spec-

tra are acquired and as many external reference measurements as possible are taken.

Calibration models would be developed from the resulting data and then be available

for application during subsequent bioreactor runs.

The critical element governing the success of this procedure is whether the

developed calibration models are robust enough to work effectively with future data.

The significant labor associated with the reference measurements dictates that the
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calibration procedure must not have to be performed very often. Two principal

factors govern the degree of success that is attainable: (1) instrument stability and

(2) process stability.

The resistance of the spectrometer to the effects of instrumental drift is ex-

tremely important in determining the overall robustness of the calibration model. As

described in Chapter 5, even with the internal air reference, calibration models built

from data collected with the AOTF spectrometer were observed to degrade over time.

Instability in the process itself is potentially even more problematic. A cal-

ibration model built with PCA or PLS is very heavily tied to the calibration data

used in its development. As described previously in Chapter 3, PCA and PLS are

empirical modeling methods that derive underlying factors or spectral shapes from

the calibration data. The driving force in these methods is to explain the variance

in the calibration spectra (PCA) or to jointly explain the variance in the calibration

spectra and the covariance between the spectra and reference values (PLS). For the

derived factors to be useful, both approaches have to be presented with calibration

spectra that are representative of all future spectra to which the model will be ap-

plied. Any artifacts or unique elements that contribute significant variance to the

calibration spectra will be encoded into the calibration model and may negatively

impact its performance if these elements are not present in the future data to which

the model will be applied.

Unfortunately, a bioreactor process is an inherently unstable system. During

the course of the bioreactor run, the background sample matrix is constantly changing
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as the cells grow, consume nutrients, and produce waste. The need for pH adjustment

or control of foaming may require additional reagents to be added. The starting

media for the cell growth contains many components, some of which are derived from

natural sources and may be subject to variation from batch to batch. Consequently,

it is extremely difficult to guarantee that the calibration data collected from one run

will be completely representative of future runs.

To address these limitations, this research explored the use of methodology

that is less reliant on the collection of elaborate calibration data and less dependent

on empirically derived spectral factors. Calibration models were constructed with

augmented classical least squares (ACLS)63 This method is an enhancement of tradi-

tional CLS spectral modeling115, and makes use of pure-component spectra of known

sample constituents, coupled with acquired background spectra to represent unknown

components of the sample matrix. As introduced in Chapter 5, digital filtering will

again be used to preprocess the acquired spectra to remove unwanted variance before

submission to the calibration model. To address the dynamic nature of the bioreac-

tor process, optimization of spectral and filter parameters will be used to tune the

methodology over time to account for variation in the sample matrix from run to run.

A novel synthetic data generation procedure is also introduced to obtain monitoring

data for use in assessing model performance.
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6.2 Experimental

6.2.1 Instruments and Apparatus

As in Chapter 5, a filter-based AOTF spectrometer was employed in the data

acquisition phase of this study. Data collection was performed by our collaborators

at ASL Analytical, Inc. Details about the instrumentation have been introduced

previously in the discussion of Figure 5.2 and will be summarized briefly here. A

10-Watt tungsten lamp provided the light source. A beam splitter reflected 10% of

the scanned light to the reference channel. Light from each channel was collected

with two-stage thermo-electrically cooled InGaAs detectors. A single spectrum was

based on 600 spectral sweeps within a 15-second integration time. The scanning wave-

lengths ranged between 5000 and 4000 cm−1. Samples flowed continuously into the

spectrometer from the bioreactor through a 1.3-mm inner diameter Teflon tube and

spectra were scanned directly through the tubing. Teflon exhibits minimal absorption

in the 4000 to 5000 cm−1 range.

6.2.2 Data Collection and Partitioning

The spectra employed in this work consisted of a combination of laboratory

data designed to simulate the chemical composition of bioreactor samples and biore-

actor data acquired during actual growth of Pichia pastoris. Each of these data sets

will be described separately below.
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6.2.2.1 Laboratory Data

The laboratory data were collected from mixture samples containing varying

amounts of glycerol, methanol, and sorbitol in a phosphate-buffered aqueous matrix

that simulated the typical growth media used in Pichia bioreactors. Mixture samples

were generated in real time by use of an in-house constructed system of computer-

controlled peristaltic pumps. Stock solutions of glycerol (40.0 g/L, Sigma Chemical

Co., St. Louis, MO, >99.0%), methanol (10.0 g/L, Fisher Scientific, Pittsburgh,

PA, ACS reagent), and D-sorbitol (18.2 g/L, Sigma, ≥98%) were prepared in the

background matrix and combined via the pumping system to produce mixture samples

in which the glycerol, methanol, and sorbitol concentrations ranged from zero to the

stock solution concentrations noted above. The background media contained yeast

extract (∼10 g/L, Sensient Bio-Ingredients, Milwaukee, WI), yeast nitrogen base

(YNB) (∼13 g/L, Becton Dickinson Co., Franklin Lakes, NJ), soy peptone (∼20 g/L,

Kerry Bio-Science, Norwich, NY), potassium phosphate dibasic (∼2 g/L, Sigma, ACS

reagent), and potassium phosphate monobasic (∼12 g/L, Fisher, ACS reagent). In

addition, 5-fluorouracil (∼0.4 g/L, Sigma, 99%) was added as a preservative.

The open circles in Figure 6.1A denote the 130 pure and mixture samples

generated through this approach. The sample collection protocol consisted of 14

repeats of the following pattern: (1) background matrix, (2) glycerol stock solution,

(3) methanol stock solution, (4) sorbitol stock solution, (5) five mixture samples. The

background matrix and the three stock solutions were then measured one final time

to complete the run. After setting the appropriate pump speeds to produce a given
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sample, the solution was flowed through the spectrometer for 7 min. The complete

run of 130 samples required approximately 15 h and was performed in an automated

manner with only periodic inspection. This experiment was performed three times

over 17 days (days 1, 16, 17).

Each peristaltic pump was calibrated at the beginning and end of each block

of 130 samples. Pump calibration consisted of delivery of water into a receiving

vessel placed on an analytical balance. The resulting mass vs. time data were used

to correlate rotor speed with observed pump flow rate. For the mixture samples,

component concentrations were then computed by use of the calibrated flow rates

and stock solution concentrations. Concentrations of individual samples were taken

as the average of the concentrations produced by the two pump calibrations. Pooled

standard deviations in the glycerol, methanol, and sorbitol concentrations computed

across the pump calibrations were less than 0.03 g/L except for glycerol on day 1

(0.15 g/L).

As described in Chapter 5, one complication that affected the data was the

occurrence of air bubbles in the sampling tube as it flowed through the spectrometer.

Air bubbles are a problem in the 4000-5000 cm−1 spectral region because they result

in a reduction of absorbance of the aqueous background and thus cause a change in

the shape of the single-beam spectrum. The data acquisition software controlling the

spectrometer was designed to detect the presence of air bubbles through this change

in the spectral shape. Any spectra that were determined to have air bubbles were

discarded and not stored. For the run on day 1, air bubbles were a significant problem
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and resulted in a loss of data for a number of samples. In addition, the gaps in the

data resulted in difficulty in reliably assigning spectra to concentrations. For this

reason, spectra of only 82 of the 130 samples on day 1 could be assigned to reference

concentrations. These samples are indicated by the hatched circles in Figure 6.1A.

For days 16 and 17, all 130 samples were recorded.

6.2.2.2 Bioreactor Data

As introduced previously, each bioreactor run involves three steps, the glycerol

feed for cell culturing, the transition phase in which the cells are starved, and the

protein production step with methanol as the carbon source. Specific experimental

conditions may change from run to run. The research presented here was based on five

individual bioreactor runs (Runs 1-5) performed at the Center for Biocatalysis and

Bioprocessing at the University of Iowa. For simplicity in describing the experimental

protocol, the details of Run 1 are provided below as an example of typical conditions.

At the time the reactor was inoculated with Pichia cells, the total liquid volume

of the fermentor was ∼8 L with around 110 g glycerol. Other major species for the

initial cell growth state included 35 g ammonium sulfate, 1.75 g YNB, 78 g spray-

dried corn steep, 0.4 mg biotin, and 5 mL anti-foaming reagent. Specific sources

for these reagents were not available to us. The pH of the liquid was controlled

to 5.0 with ammonium hydroxide. The initial reactor temperature was 30 ◦C. The

glycerol feed stage lasted ∼40 h. When the glycerol concentration dropped to ∼0

g/L, the methanol feed for the protein production was started by adding 40 g of
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methanol (∼50 mL), 7 g YNB, 2 mg biotin, and 50 mL deionized water. The protein

production lasted ∼30 h.

After the inoculation, the concentrations of the analytes of interest (glycerol

and methanol) were monitored by both the spectroscopic and reference methods. The

liquid in the fermentor was pumped out and flowed through a circulated Teflon tube

and introduced to the AOTF spectrometer. Spectra were recorded continuously at 15

s intervals. To obtain the reference concentrations, samples were collected hourly and

analyzed for glycerol and methanol concentration by use of an Analox GM8 Multi-

Assay Analyzer (Analox Instruments, Ltd., London, UK). This analyzer uses a Clark-

type amperometric oxygen electrode to monitor the enzyme-catalyzed oxidation of the

selected analyte. The concentration profiles obtained from the reference method for

glycerol and methanol are plotted as a function of time in Figures 6.1B and 6.1C.

In the figure, circles represent the concentration points collected by the reference

method. The points are connected by lines without interpolation.

6.2.2.3 Data Partitioning

In the analysis of the laboratory data, the 82 samples collected on Day 1

were used as calibration data for both glycerol and methanol. Model validation was

performed on the rest of the samples from Days 16 and 17. For each sample, the

three spectra located at the center of the block of spectra defining the concentration

were taken as replicates. No co-addition was performed.

For the bioreactor data, the starting conditions of each run were different in
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(C) Bioreactor Profile of Methanol

Figure 6.1. Concentration profiles. (A) Experimental design of laboratory data col-
lection for 130 mixture samples of glycerol, methanol, and sorbitol (open circles).
Duplicate samples exist for the background matrix and pure-component solutions.
Because of loss of data arising from the presence of air bubbles, only 82 samples on
day 1 could be accurately assigned to spectra. These samples are indicated by the
hatched circles. (B) Glycerol concentration profile of the bioreactor data from Runs
1 to 5 obtained from the reference measurements. In each figure, circles represent the
collected reference samples. Samples within each run are connected by straight lines
without interpolation. (C) Methanol concentration profile for bioreactor runs. The
format of the presentation is the same as in the panel above. Run 1: Magenta. Run
2: Red. Run 3: Green. Run 4: Blue. Run 5: Black.
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terms of the feed protocols (i.e., the background sample matrix) and temperatures.

For this reason, calibration models were built individually for each run. During the

cell culturing stage, spectra from the first 5 hours after the inoculation were used in

building the glycerol model. Spectra collected 5 hours before the start of the methanol

feed were employed in methanol modeling. Details about the modeling procedures

will be presented in the next section.

6.3 Data Analysis Strategy

6.3.1 Overview of Data Analysis

As discussed previously, the AOTF spectrometer used in this research provides

separate sample and reference detector channels. Accordingly, each collected sample

spectrum has a corresponding air reference as the background and air-absorbance

spectra were used in all further calculations. Spectra were deresolved from 0.67 cm−1

point spacing to 4 cm−1 to reduce the load of the calculations. Spectra were pre-

processed as described previously in Chapter 5. Chebyshev Type II bandpass digital

filtering was applied followed by submission of the filtered data to the calibration

model calculation. Parameter optimization was again performed with particle swarm

optimization (PSO).

Because of the limited reference data and the dynamic nature of the bioreactor

sample matrix, calibration models were computed with the ACLS method rather

than with the PLS modeling technique used in Chapter 5. It was hypothesized that

insufficient reference data were available to assemble a set of globally representative
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calibration data for use in computing a reliable PLS model that could perform well

in future predictions. The ACLS method is less reliant on the collection of large

quantities of calibration data and is amenable to an implementation in which a new

calibration model could be computed for use with each bioreactor run.

As implemented in Chapter 5, the PSO optimization of the filtering and mod-

eling parameters requires a set of monitoring data for use in assessing the performance

of each parameter set evaluated. Because of the limited amount of reference data, a

synthetic monitoring set was established based on the linearly additive property of

the Beer-Lambert law. The generated synthetic monitoring data were also evaluated

for use in constructing PLS models. The concept of using synthetic NIR spectra to

build calibration models has been evaluated in previous work84,116, as well as in the

infrared remote sensing research described in Chapter 4.

6.3.2 Synthesis of Monitoring Spectra for Bioreactor Data

Before the inoculation of the reactor with Pichia cells, spectra are typically

acquired of the base media initially added to the fermentor. This media contain a

fixed and known amount of glycerol and is also known to contain no methanol. Thus,

spectra acquired before inoculation can be used as representative of the experimental

conditions and starting sample matrix associated with the current bioreactor run.

Examination of the reference data obtained for the six bioreactor runs also suggests

that during the first five hours after inoculation, the glycerol concentration remained

relatively constant because the initial cell growth and corresponding consumption of
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glycerol was very slow. Data collected during this period can also be used to extract

background information.

Due to the linear relationship between concentration and absorbance encoded

in the Beer-Lambert law, the glycerol contribution to the measured absorbance can

be subtracted based on the known glycerol concentration and its corresponding pure-

component absorbance spectrum. To a close approximation, the resulting spectra

can be considered glycerol-free and representative of the background sample matrix.

These spectra were subsequently used to generate the monitoring data.

The spectra in the background matrix were obtained by mathematical calcula-

tion as in Eq. 6.1, where AGlycerol−free,i is the absorbance in the obtained background

spectrum at point i, Ai is the measured absorbance, cInitial is the known initial glyc-

erol concentration and AUnit−Glycerol,i is the collected pure-component spectrum at

unit concentration.

AGlycerol−free,i = Ai − cInitial × AUnit−Glycerol,i (6.1)

Before each run, pure-component spectra of glycerol and methanol with known

concentrations were collected, as well as a spectrum of water. The pure-component

spectra at unit concentration were estimated by Eq. 6.2. In the equation, APure−Analyte,i

is the absorbance of the pure-component spectrum of glycerol or methanol (concentra-

tion of cAnalyte) at point i and AWater,i is the absorbance of pure water. The calculation

in Eq. 6.2 is only approximate as it assumes that the spectra scale linearly with con-

centration and that changes in glycerol or methanol concentration do not appreciably
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change the water background spectrum by solvent displacement effects.

AUnit−Analyte,i =
APure−Analyte,i − AWater,i

cAnalyte

(6.2)

After the calculations in Eqs. 6.1-6.2, the spectra were ready to be used in

generating the spectra in the monitoring set for the glycerol model. For the monitoring

set used in optimizing the methanol model, before methanol was added, all spectra

were methanol-free and could be used as backgrounds. Spectra collected five hours

before adding methanol were used to provide the best match in backgrounds to the

methanol-containing spectra collected subsequently. Spectra collected during this

time period were also always low in glycerol concentration and did not require any

mathematical subtraction of the glycerol signature.

Every eight background spectra across the five-hour window were averaged

to obtain around 250 spectra for use in generating synthetic data. To generate the

monitoring data set, 200 of the background spectra were randomly selected and ran-

dom amounts of the analyte were added in the range of 0 to 15 g/L. This pro-

cedure assumed linear additivity of the spectra and is described by Eq. 6.3. In

the equation, AMonitoring,i is the obtained absorbance of the monitoring spectrum at

point i, ABackground,i is the absorbance for the background spectrum, and cAnalyte and

AUnit−Analytie,i are as described previously.

AMonitoring,i = ABackground,i + cAnalyte × AUnit−Analyte,i (6.3)
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6.3.3 Study of Regression Methods

As mentioned above, the limited number of reference points and varied initial

experimental conditions made it difficult to use the PLS method to develop calibration

models. This led to the use of the ACLS method in this work.

For chemical systems at low concentrations, the absorbance spectrum of a

sample can be approximated as the sum of absorbances from each constituent species.

As introduced in Chapter 3, with the knowledge of each pure spectrum and the

composition of the chemical system, a CLS model can be built. For a matrix, A,

containing n absorbance spectra (p spectral points) in the columns, a typical CLS

model is written as:

A = KC + E (6.4)

where K is a matrix whose columns contain pure-component absorbance spectra at

unit concentration and constant path length for each of h components, C is a matrix

whose n columns specify the h component concentrations contributing to the spectra

in A, and E is the residual error matrix. For a simple chemical system, the K matrix

can be assembled by obtaining the pure-component spectra of each species at unit

concentration, and the concentration matrix Ĉ can estimated

Ĉ = (K′K)−1K′A (6.5)

However, for the complicated bioreactor runs, especially considering the pres-
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ence of the cells and the dynamic nature of the spectral background, it is impossible

to specify K in Eq. 6.5 precisely. In this case, ACLS can be a useful method. The

ACLS method is based on the recognition that the K matrix used in the concentration

estimation in Eq. 6.5 can contain other “spectral shapes” in addition to the known

pure-component spectra. All components except the target analyte can be considered

as background species. For example, in the first half of the bioreactor runs, glycerol

is the analyte of interest. All of the other species, including the cells, YNB, peptone,

and water are part of an integral background. Their spectral information combines to

define the background absorbance. Because the glycerol contribution in absorbance

has, to a first approximation, been removed mathematically through the use of Eqs.

6.1-6.3, the five-hour block of background data can be used to extract the components

or spectral shapes that define the underlying absorbance.

Principal component analysis (PCA)3,61 was employed to extract a mathe-

matical representation of the underlying components of the background. While the

individual spectral loadings that define the principal components (PCs) do not cor-

respond to the pure-component spectra of specific chemical species, together they

provide an efficient representation of the background spectral variance. The incorpo-

ration of PCs into CLS models was introduced by Martens and Naes61 and has been

used by Haaland63 in developing various ACLS methods. Olesberg et al. have used

the approach to characterize the spectral background in in vivo NIR measurements

of rat tissue.94

With the m computed spectral loadings as the estimation of the background
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matrix, the original CLS model in Eq. 6.4 can be modified as

A = KC + TP + E = KaCa + E (6.6)

The terms A, KC, and E are as defined in Eq. 6.4, P is the (p×m) matrix of

spectral loadings, and T is the (m×n) matrix of scores that encodes the contributions

of the PCs in P in establishing the background for each of the n spectra comprising A.

The matrices, P and T, are obtained from application of PCA to the five-hour block

of background spectra. The model can be further defined by adding the background

spectral loadings as additional columns in K to form the augmented Ka matrix. The

concentrations in unknown spectra can then be estimated from Eq. 6.5 by using Ka

instead of K.

In building the model for glycerol, the unit pure-component spectra calculated

from Eq. 6.2 were used. No methanol was added in the model because it was not

involved in the experiment during this period. The first two PCs resolved from the

glycerol-free background spectra were then added into the Ka matrix with a linear

baseline correction term. The methanol model was defined similarly. Because glycerol

was still present in the background matrix used with the methanol model, besides

the methanol pure-component spectrum, the glycerol pure-component spectrum was

also added into Ka. The spectral range and digital filtering parameters were studied

in the optimization step with the simulated monitoring spectra.

For the laboratory data without cells present, spectra with only the back-
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ground matrix flowing were collected to represent the background. Besides glycerol,

methanol and sorbitol, pure-component spectra of YNB, peptone and yeast extract

were also collected and could be added into the ACLS model. Here, the optimization

also involved the selection of which additional components to add to the Ka matrix.

This procedure will be introduced in the optimization section.

6.3.4 Optimization

Similar to the work described in Chapter 5, the optimization of the calibration

model employed particle swarm optimization (PSO). We have previously discussed

the details regarding the implementation of PSO. Similar procedures were used here.

In the execution of the optimization for the bioreactor data, the spectral range

selection in the ACLS model and the filter parameters of the Chebyshev type II

bandpass filter were studied. The spectral range was selected between 4800 cm−1 and

4200 cm−1 in 10 cm−1 intervals. The filter order was selected between 1 and 6, with

the stopband attenuation ranging from 20 to 100 dB with an increment at 5 dB. The

normalized frequency cut-off was studied between 0.01 and 0.99 with 0.01 spacing. Six

parameters were optimized; thus, the dimension of the particles was six. The fitness

function which guided the model convergence to the global best was the standard

error in concentration predictions for the the synthetic monitoring set. This will be

termed the standard error of monitoring (SEM). As in Chapter 5, the optimization

was performed 10 times, and the model with the lowest SEM was selected for use

in prediction. The optimized model was used without change throughout a given
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bioreactor run, but was repeated for each separate run.

In the laboratory non-cell experiment, pure-component spectra of glycerol,

methanol, sorbitol, YNB, and peptone were also collected. Besides the analyte of

interest, the pure-component spectra of other species, such as sorbitol and peptone,

can also be added into the K matrix, or included in the background spectral loadings.

Therefore, the optimization also involved a selection of the pure components used in

the ACLS model. The extra spectra were added into the optimization parameters

and controlled in a switch mode. In operation of the PSO, by randomly selecting

either 1 or 0, the component was on or off in the model. With the component

selection, there were 9 parameters in the optimization, including two parameters of the

spectral segment, the number of latent variables, the filter order, the frequency cut-

off (starting and ending points), the stopband attenuation, and three binary numbers

which represented the additional components. The model which provided the lowest

error value in predicting the calibration samples from the first run was chosen as the

best model after 10 runs of the optimization with different initial populations of 50

particles.

Because the laboratory data contained a conventional set of calibration data

with known concentrations, PLS models could also be computed for comparison with

the models based on ACLS. Optimization of the spectral range and filter parameters

was performed as outlined above. The maximum number of latent variables was 10

followed by the F-test as described in Chapter 5. Instead of three random draws of

the monitoring set as done in Chapter 5, a leave-10%-out cross-validation procedure



182

was employed to obtain a monitoring error as the fitness value. Each prediction

subset in cross-validation was selected by consecutive blocks. The global optimum

was selected based on the lowest cross-validated standard error of prediction (CVSEP)

value obtained across 10 PSO runs. Each run had a different starting population

with 30 initial sets of parameters. This model was selected for application to the two

prediction sets.

6.4 Results and Discussion

6.4.1 Results for Laboratory Data

The optimization results in terms of the filter design and regression model

for the non-cell laboratory data are shown in Table 6.1a for glycerol and 6.1b for

methanol. Three data sets are considered: calibration data and prediction sets 1

and 2. The corresponding standard error of calibration (SEC) and standard error

of prediction (SEP) values are listed in Tables 6.2a and 6.2b. In the figures and

tables, ACLS1 denotes the CLS model based on pure-component spectra of glyc-

erol, methanol, sorbitol, and one spectrum representing the background matrix. The

ACLS2 model included the possibility of adding pure-component spectra of soy pep-

tone, yeast extract, or YNB in addition to the components of the ACLS1 model.

Based on the prediction ability of the calibration and prediction sets, although the

PLS and ACLS2 models were generally better performing with the calibration data,

the ACLS1 method provided lower SEP values (below 0.5 g/L) while offering a com-

petent SEC. Correlation plots are shown in Figures 6.2 and 6.3. Obvious bias in the
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prediction can be observed from both the ACLS2 and PLS models. The PLS model

is particularly bad in this respect.

The PLS method performs the prediction based on spectral factors (latent

variables) extracted from the calibration data. Bias in the prediction results sug-

gest the occurrence of some new source of variation in the intervening time between

the calibration and prediction data. This led to the use of an updating strategy

in Chapter 5. By contrast, after getting the optimized filter parameters, the CLS

method uses the latest pure-component spectra and the background spectrum of the

current run in assembling the K matrix. By automatically including data from the

current prediction day, this approach potentially avoids the variation brought about

by instrumental drift. However, if new components are introduced into the system, a

repeat of the optimization of the filter and spectral range parameters is still needed.

6.4.2 Process Monitoring Results with Bioreactor Data

The optimization results describing the digital filters and spectral range pa-

rameters used with the ACLS models are listed in Table 6.3. Figure 6.4 depicts the

process monitoring results for glycerol in the five bioreactor runs. The monitoring

period covered from 5 hours after the inoculation started to the starvation period be-

fore the methanol was added. The blue crosses represent the predicted concentrations

estimated by the spectroscopic method, while the solid red dots are the reference val-

ues. By matching the spectral acquisition time to the time when the reference sample

was collected, the corresponding sample spectrum can be obtained. Therefore, the
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Table 6.1. Filter design and calibration models for laboratory non-cell data

(a) Glycerol

Model
Filter Parameter Regression Model

Order
Frequency Stopband Spectral

NoteCut-off Attenuation Range
(Normalized) (dB) (cm−1)

ACLS1 4 0.02 - 0.99 25 4700 - 4320
ACLS2 5 0.01 - 0.19 35 4695 - 4325 Peptonea

PLS 1 0.01 - 0.22 25 4760 - 4180 LVb = 9

(b) Methanol

Model
Filter Parameter Regression Model

Order
Frequency Stopband Spectral

NoteCut-off Attenuation Range
(Normalized) (dB) (cm−1)

ACLS1 6 0.03 - 0.59 85 4805 - 4460
ACLS2 6 0.02 - 0.97 50 4745 - 4485 nonec

PLS 2 0.01 - 0.99 35 4800 - 4300 LVb = 3

a Model included the pure-component spectrum of soy peptone.

b Number of latent variables in PLS model.

c Optimized model did not include additional pure-component spectra.

Table 6.2. SEP values (g/L) for non-cell data monitoring

(a) Glycerol

Data Set ACLS1 ACLS2 PLS

Calibration 0.28 0.22 0.10
Prediction 1 0.46 0.91 3.9
Prediction 2 0.70 0.94 11.9

(b) Methanol

Data Set ACLS1 ACLS2 PLS

Calibration 0.51 0.50 0.031
Prediction 1 0.70 0.92 0.77
Prediction 2 0.66 1.66 0.28
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(A) ACLS1, Calibration, SEC=0.28 g/L
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(B) ACLS1, Prediction, SEP=0.46/0.70g/L
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(C) ACLS1, Calibration, SEC=0.22 g/L
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(D) ACLS2, Prediction, SEP=0.91/0.94g/L
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(E) PLS, Calibration, SEC = 0.10 g/L
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(F) PLS, Prediction, SEP = 3.9/11.9 g/L

Figure 6.2. Correlation plots for glycerol predictions in the laboratory data. The
subfigure caption shows the corresponding algorithm, data set and error value (SEC
or SEP). The ACLS models are termed ACLS1 and ACLS2. The ACLS1 model used
the three major components (glycerol, methanol and sorbitol) and the background
in assembling the Ka matrix. In the ACLS2 model, besides the major components
and background spectra, the optimization involved a component selection from soy
peptone, YNB and yeast extract. In the prediction plots, the blue and red symbols
denote prediction sets 1 and 2, respectively.
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(A) ACLS1, Calibration, SEC = 0.51 g/L
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(B) ACLS1, Prediction, SEP=0.70/0.43g/L
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(C) ACLS2, Calibration SEC = 0.50 g/L
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(D) ACLS2, Prediction, SEP=0.92/1.66g/L
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(E) PLS, Calibration, SEC = 0.031 g/L
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(F) PLS, Prediction, SEP = 0.77/0.28 g/L

Figure 6.3. Correlation plots for methanol prediction of the laboratory data. The
subfigure caption shows the corresponding algorithm, data set and error value. The
plot format is the same as in Figure 6.2
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SEP value of each run can also be calculated and is listed in Table 6.5. In calculating

the SEP values for the glycerol prediction, the time period was selected from five

hours after inoculation until methanol was added.

It can be observed that, for some of the runs, the initial glycerol concentration

has a larger variation to the calculated value. This was because the reference method

obtained with the Analox instrument does not have a good response to high concen-

tration samples. However, once the cells start to consume glycerol, the spectroscopic

method provides a good consistency with the reference method. For Run 5, the large

fluctuation at around 40 h is caused by a blockage of cells in the Teflon sampling tube

used to move material to the spectrometer.

For methanol predictions, the optimization results for the digital filters and

spectral ranges used in the ACLS models are listed in Table 6.4 and the prediction

results are plotted in Figure 6.5. The time period monitored begins with the methanol

introduction and continues until the end of the reference sample collection.

The SEP values for both methanol and glycerol predictions are listed in Table

6.5. Overall, methanol predictions are good except for Run 5 in which a large bias in

predicted values exists.

6.4.3 Comparison Result with Methods without Signal Processing

Results obtained from this work are compared with the algorithms without

signal processing. For the laboratory data, the spectral range was selected by a grid

search on 4800 to 4200 cm−1 with the moving step at 5 cm−1. The range size was
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Table 6.3. Optimization results for glycerol predictions in bioreactor runs

Model
Filter Parameter ACLS

Order
Frequency Stopband Spectral

Cut-off Attenuation Range
(Normalized) (dB) (cm−1)

1 6 0.01 – 0.49 20 4670 – 4220
2 2 0.01 – 0.21 25 4675 – 4270
3 1 0.01 – 0.63 95 4555 – 4350
4 2 0.01 – 0.50 30 4620 – 4380
5 2 0.01 – 0.56 35 4525 – 4310

Table 6.4. Optimization results for methanol predictions in bioreactor runs

Model
Filter Parameter ACLS

Order
Frequency Stopband Spectral

Cut-off Attenuation Range
(Normalized) (dB) (cm−1)

1 3 0.01 – 0.15 45 4620 – 4270
2 3 0.02 – 0.13 45 4760 – 4240
3 6 0.01 – 0.99 20 4700 – 4235
4 2 0.02 – 0.17 20 4620 – 4380
5 4 0.01 – 0.63 20 4730 – 4385

Table 6.5. Prediction results for bioreactor monitoring

Run Glycerol SEP (g/L) Methanol SEP (g/L)

1 0.98 2.84
2 1.24 1.28
3 2.71 0.91
4 2.14 3.42
5 1.32 0.23
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(B) Run 2
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(C) Run 3
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Figure 6.4. Prediction results for ACLS models used in glycerol predictions in the
bioreactor runs. In each figure, the blue symbols denote the predicted concentrations
from the NIR measurements. The red dots are the reference concentrations.
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Figure 6.5. Prediction results for ACLS models used in methanol predictions in the
bioreactor runs. In each figure, the blue symbols denote the predicted concentrations
from the NIR measurements. The red dots are the reference concentrations.
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changed from 100 to 600 cm−1 with an increment of 20 cm−1. The selection of the

number of latent variables for the PLS model used an F-test as before. The maximum

number of latent variables was 15. A leave-10%-out cross-validation was employed.

For the laboratory data, the grid search was performed on the calibration set.

The bioreactor data used the synthetic monitoring spectra to seek the best ACLS

model for each run. The obtained SEP values are plotted in Figures 6.6 and 6.7.

Without digital filtering, the ACLS did not perform well with the laboratory data

and in the glycerol predictions in the bioreactor data, but it provided a competitive

result for methanol monitoring. The PLS algorithm did not produce a stable model

for glycerol but worked acceptably for methanol.

6.5 Conclusions

In this study, we established a protocol for the process monitoring of batch

fermentation of Pichia pastoris cells. The purpose of the monitoring was to control

the carbon source of either cell or protein growth. An in-line method is more desired

for the reason of automatic sampling, less labor, and real-time continuous response.

The tubing system enables continuous data collection with automatic sampling. The

filter-based AOTF spectrometer provides a useful measurement platform for this ap-

plication because of its rugged and compact properties.

In data analysis, the conventional PLS regression method requires a sufficient

number of reference samples to build a calibration model, as well as a chemical system

that is stable over time. Therefore, PLS modeling is not readily applicable to this
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Figure 6.6. Compared prediction results (SEP) without (blue) and with (green for
ACLS1, orange for ACLS2) digital filtering for the laboratory data. The PLS results
are shown in cyan (with digital filtering) and red (without digital filtering). (A)
Glycerol results; (B) Methanol results. The ACLS1 results with filtering provide the
most consistent performance overall.
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Figure 6.7. Compared prediction results (SEP) for ACLS models without (blue) and
with (red) digital filtering for the bioreactor data. (A) Glycerol results; (B) Methanol
results. The results with filtering provide the most consistent performance overall.
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bioreactor monitoring application due to the small number of reference measurements

available and the dynamic nature of the sample matrix both within and between runs.

In this work, an optimized digital filtering/ACLS method was evaluated for use in

performing continuous monitoring. The ACLS approach uses the pure-component

spectrum of the analyte of interest and other representative component spectra ei-

ther known or extracted from the background matrix to build the total component

matrix. The constructed matrix is used for further prediction. The ACLS regres-

sion only needs the pure-component spectra and spectra of the background matrix

for calibration, thereby avoiding the need for large quantities of reference data. The

modeling approach is also consistent with updating the model at the start of each

bioreactor run.

Signal processing, specifically Chebyshev Type II bandpass filtering, was found

to be useful as a spectral preprocessing tool. To obtain the best filter design, PSO was

used to optimize the filter design variables along with the spectral range submitted to

the ACLS calculation. During the optimization process, reference measurements are

required to evaluate each possible filter and spectral range, and the optimization has

to be completed at an early stage of the process in order that the model be available

for use in predicting unknown concentrations. Few, if any, reference points can be

assumed to be available other than the known starting composition of the base media.

For this reason, this research employed a synthetic data generation step to obtain a

set of monitoring spectra for use in driving the model optimization. The approach

proved workable and the combination of filtering and ACLS produced good prediction
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results for both the laboratory and bioreactor data.

One issue that could not be successfully addressed in this work is the need

for updating the model as the bioreactor process evolves. For example, digital filters

optimized at the beginning of the bioreactor run may no longer be optimal as the

run progresses. Updating of the parameters may be needed to re-establish an optimal

calibration model. Various methods were attempted to implement this concept but

a well-performing solution could not be found. This remains an important area of

study for future work.
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CHAPTER 7
AUTOMATED CALIBRATION PROTOCOL FOR CONTINUOUS

BIOREACTOR MONITORING BASED ON WAVELET
PREPROCESSING

7.1 Introduction

In Chapter 6, we have discussed the importance and application of the batch

process. Continuous monitoring can be extremely valuable in helping to ensure a suc-

cessful process application in the pharmaceutical or manufacturing industries. Among

potential monitoring tools, spectroscopic methods provide direct chemical information

and are nondestructive, thereby enabling in-line process monitoring. Near infrared

analysis is especially attractive because of its compatibility with aqueous solutions

and easy sample preparation. Therefore, NIR spectroscopy is well-suited for use in

implementing automated process monitoring.

A protocol for continuous monitoring via NIR spectroscopy has been estab-

lished in the previous chapter. To monitor a process by NIR measurements, the

classical way is to obtain a group of calibration data points (spectra and correspond-

ing reference concentrations for the target analyte(s)) , build a PLS calibration model

and then apply that model to future data for as long as prediction performance is

maintained. An update or recalibration of the model is then performed and the cycle

repeats.21

However, for a real process, the concentration changes might be slow, inducing

a long and tedious task in data collection. Furthermore, for limited reference data
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collections, the obtained concentration range might be not wide enough to interpolate

to a representative concentration profile.

To address these limitations, the research described in Chapter 6 employed

ACLS models that take advantage of known pure-component spectra and are less re-

liant on the collection of large numbers of calibration samples and associated reference

measurements. The performance of the ACLS models was improved by application of

a preprocessing bandpass digital filter that was tuned to the experimental conditions

of the current run. A data synthesis procedure was employed to generate a set of

monitoring samples for use in optimizing both the filter bandpass and the spectral

range submitted to the ACLS model.

The choice of bandpass digital filtering as a spectral preprocessing tool is based

on a significant literature that supports its use with NIR data.100,117,118 It is useful

in the removal of potential interference signals from the background matrix and can

help to minimize spectral variation associated with changes in sample temperature.

In Chapters 5 and 6, we have applied bandpass digital filtering to both laboratory

and bioreactor data. Other signal processing methods, for example derivative anal-

ysis119,120 and wavelet analysis, can also play an effective role in the suppression

of unwanted spectral features. Wavelet analysis has been widely applied in various

spectroscopy fields, including nuclear magnetic resonance (NMR), ultraviolet-visible

(UV-vis), and Raman.121–124 In applications in infrared spectroscopy, the wavelet

transform is useful in removing fluctuating backgrounds and in improving classifica-

tion and quantification accuracy.59,125,126
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The wavelet transform uses a wavelet function to decompose an input signal

into a set of wavelet coefficients termed approximations and details. The approxi-

mations can be further decomposed into a new set of approximations and details.

Depending on the decomposition level, the wavelet coefficients of the approximation

or details have different frequency and time resolution than the original signal. The

multi-resolution property of wavelets is helpful in the analysis of the signal, for ex-

ample background correction, noise removal, and peak separation. With a certain

wavelet function and proper selection of the decomposed wavelet coefficients, the an-

alyte spectral features can be extracted, thereby inducing a better quantitative result.

Details about the principles of the wavelet transform have been introduced in Chapter

3.

In this chapter, we continue the investigation of the real-time continuous mon-

itoring of the bioreactor runs of Pichia pastoris cells. Glycerol and methanol are the

carbon sources and the analytes of interest in the study and are used for cell growth

and protein production, respectively. Here, the wavelet transform is used as the spec-

tral preprocessing tool in place of digital filtering. Both the laboratory simulated

data and the bioreactor process data were studied. Optimization is still a neces-

sity in order to seek the proper wavelet function and the corresponding decomposed

coefficients. The ACLS modeling technique was again used to obtain estimated glyc-

erol and methanol concentrations. The utility of the wavelet transform in improving

prediction performance is compared to that of digital filtering.
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7.2 Experimental

The work described in this chapter employed the same AOTF spectrometer

described previously in Chapters 5 and 6. The collection of laboratory and bioreactor

data was described in Chapter 6. In the data analysis employing wavelet preprocess-

ing, both of the non-cell laboratory data and the bioreactor data were studied.

The data partitioning used was also the same as described in Chapter 6. The

laboratory data were divided into calibration (Day 1) and prediction sets (Days 16 &

17). The calibration data were also used as the monitoring spectra in the optimization

runs. For the bioreactor data, the problem of limited reference points persisted in

this study. The synthetic data generation strategy based on using mathematically

generated monitoring spectra for use in driving the optimization proved to be useful

in the work described in Chapter 6 and was also employed here.

All computational work was performed under MATLAB (version 7.4, The

MathWorks, Inc., Natick, MA) running on a Dell Precision 670 workstation (Dell

Computer Corp., Austin, TX) operating under Red Hat Enterprise Linux WS (Red

Hat, Inc., Raleigh, NC). The wavelet transform and PSO calculations were imple-

mented with the Matlab wavelet toolbox (version 6.7, The MathWorks, Inc.) and

the public-domain Particle Swarm Optimization Toolbox developed by Brian Birge

(version 2.5) and available through the file exchange maintained by The MathWorks,

Inc.
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7.3 Data Analysis Strategy

7.3.1 Overview of Data Analysis

With the air reference as the background, each collected spectrum was con-

verted into absorbance units for use in further analysis. The point spacing was re-

duced from 0.67 cm−1 to 4 cm−1. Data preprocessing focused on the use of the discrete

wavelet transform (DWT). The DWT uses a wavelet function to decompose an input

signal into hierarchical sets of approximations and details. The signal can then be

reconstructed using some subset of the details in order to remove unwanted compo-

nents. Preprocessed spectra were then used in the construction of quantitative ACLS

models for glycerol and methanol. Models based on PLS were also constructed with

the laboratory data for comparison. Optimization using the PSO method was again

employed in finding optimal values for the signal processing and model generation

parameters.

7.3.2 Implementation of Optimization with the Wavelet Transform

The most frequently used wavelet functions include the Daubechies, Symm-

let and Biorthogonal families. The family specification is also termed the mother

wavelet. Individual functions within each family are designated by an additional or-

der parameter. Functions from different families have different properties in terms of

shape, symmetry, support and vanishing moment.57,58.

As noted above, during the wavelet transform process, the signal is decomposed

into one approximation and one detail component. The obtained approximation can
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then be further decomposed into new approximation and detail components. This

process continues for a specified number of levels of decomposition, n. This leads

to one final approximation component and n detail components. Taken together,

the approximation and n details can be used to reconstruct the original input signal

(spectrum) exactly. If one or more of these components are not used in the recon-

struction, an altered spectrum is obtained in which some of the original information

has been suppressed.

The approximation coefficients obtained from the final level of decomposition

are assumed to carry the broad background information that underlies the narrower

spectral features that are superimposed on the background. In the reconstruction

process used here, the approximation was discarded. Detail coefficients from different

levels were then selected by the optimization procedure In the wavelet transform of

this study, wavelet functions from two wavelet families, ‘Daubechies’ (db) and ‘Symm-

let’ (sym), were used. Specifically, db2, db4, db6, db8, sym2, sym4, sym6, and sym8

functions were involved in the optimization. The number after the family specifier is

the order parameter that identifies the specific wavelet function used. Figure 7.1 plots

the wavelet functions used in this study. The maximum decomposition level was 6

with the minimum at 2. In the PSO calculations, the selection of the reconstructed

coefficients was performed in a binary mode. Each level of details coefficients was

assigned either ‘1’ or ‘0’ initially, where ‘1’ indicated that the corresponding level

was included and ‘0’ meant that the level was omitted from the reconstruction of

the spectrum. In the optimization, the total number of optimized parameters for the
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signal processing was eight, including the wavelet function, the level of decomposition

and the selection parameters for each level. For decomposition levels lower than 6,

the PSO still generated six binary numbers for reconstruction, but the last several

numbers were idle. For example, a 4-level decomposition would use the first four

binary numbers in the reconstruction and ignore the last two.

After the signal processing, a quantitative analysis was performed to predict

glycerol and methanol concentrations. The spectral range is an essential factor for

both ACLS and PLS models. For the PLS algorithm used with the laboratory data,

the number of latent variables included in the model is also a key parameter. The

optimization of these regression methods has been introduced previously in Chapters

5 and 6 and the same procedures were used here. A maximum of 15 latent variables

was allowed in the PLS models and the F-test procedure described in Chapters 5 and

6 was used in the evaluation of each set of parameters to determine the optimal model

size.

The optimized parameters of the wavelet transform and multivariate regression

are listed in Table 7.1. For one group of ACLS models developed for the laboratory

data in Chapter 6, the soy peptone, yeast nitrogen base (YNB), and yeast extract

components were included in the optimization and allowed to be chosen. This proce-

dure was also used in the work reported here.
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Figure 7.1. Wavelet functions used in optimization. The notation “dbN” represents
functions from the Daubechies family, while “symN” specifies functions derived from
the Symlet mother wavelet.
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Table 7.1. Optimized parameters in wavelet transform, augmented CLS and PLS

Method Parameters

Wavelet Transform
Functions: db2a, db4, db6, db8, sym2b, sym4, sym6, sym8
Decomposition level: 2 - 6
Level of details selected for reconstruction: 2 - 6

Augmented CLS Spectral range: 4800 to 4200 cm−1 in steps of 5 cm−1

Additional components: soy peptone, yeast extract, YNB

PLS Spectral range: 4800 to 4200 cm−1 in steps of 5 cm−1

Number of latent variables: 5 to 15

a Daubechies family with order 2. Other Daubechies functions are specified
analogously

b Symlet family with order 2. Other Symlet functions are specified analogously.

7.4 Results and Discussion

Examples of spectra before and after the wavelet transform are shown in Fig-

ure 7.2. Table 7.2 lists the wavelet function used, the corresponding decomposition

level and the selected levels of details employed in the reconstruction, and the spec-

tral range used in the regression step. In the table, ACLS1 denotes the algorithm

based on augmented CLS in which the background was represented by the collected

matrix spectrum at the beginning of the experiment. Then, the Ka matrix was com-

posed of the pure-component spectra of glycerol, methanol, sorbitol, and the matrix

spectrum. In the ACLS2 method, additional pure components (soy peptone, yeast

extract, and YNB) were involved in the optimization such that the model was given

the option of including these terms. Therefore, the corresponding Ka would contain

more components.

The SEP values describing the prediction performance of each method are
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listed in Table 7.3. The corresponding correlation plots of calibration and prediction

are shown in Figures 7.3 and 7.4. In the correlation plots, the left column shows the

predicted values versus the reference values from the calibration in blue plus signs.

On the right are shown the correlation plots for the two prediction sets, in which the

blue plus signs represent the first set and red symbols indicate the second.

From the error values and the correlation plots, the three methods all cali-

brate very well for the glycerol models. Compared to the PLS method, however, the

ACLS1 and ACLS2 methods provide much better prediction results and a more stable

correlation between the estimated and reference values. The PLS prediction has the

issue of bias in the prediction results. This suggests that the calibration data are not

globally representative such that the derived PLS loadings adequately carry forward

to the prediction data collected more than two weeks later.

In the methanol predictions, although the PLS method provided a much better

calibration, the prediction performance is not as good as that of the calibration. The

systematic bias problem observed with the glycerol model persisted. Whereas the

ACLS2 method could predict better than PLS in terms of the SEP values, slight bias

in the prediction can still be observed.

Generally speaking, for both glycerol and methanol, the ACLS model with

component selection included in the optimization provided good performance with

the calibration and prediction data. The PLS method could calibrate very well but

the computed model could not extend to the prediction data collected subsequently.

It appears an update of the PLS model is required to make it compatible with the
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Table 7.2. Wavelet analysis and regression models for non-cell laboratory data

(a) Glycerol

Model
Wavelet Transform Analysis Regression Model

Wavelet Decomposition Levels of Details Spectral Range Note
Function Level in Reconstruction (cm−1)

ACLS1 db4 4 [1,2] 4595 - 4260
ACLS2 db4 6 [1,5] 4735 - 4200 Peptone

PLS db4 6 [1,2,3,5,6] 4935 - 4395 LVa= 9

(b) Methanol

Model
Wavelet Transform Analysis Regression Model

Wavelet Decomposition Levels of Details Spectral Range Note
Function Level in Reconstruction (cm−1)

ACLS1 db8 2 [1,2] 4750 - 4390
ACLS2 db10 3 [2,3] 4800 - 4440 none

PLS db6 6 [1,3,4,5] 4725 - 4365 LVa= 7

a Number of latent variables in PLS model.

prediction data. This illustrates the principal problem with the use of the PLS ap-

proach for a continuous monitoring application in which little time is available for the

collection of extensive amounts of calibration data. By contrast, the ACLS can easily

incorporate information from the prediction data through the collection of a very

simple set of solutions (pure-component solutions and a sample of the base media)

on the prediction day. This data collection is considered feasible as part of a start-up

protocol for a bioreactor run.

7.4.1 Process Monitoring Results for the Bioreactor Data

The optimization results obtained for the bioreactor data are listed in Table 7.4

for glycerol results and Table 7.5 for methanol results. Both tables list the optimized

wavelet function parameters and spectral ranges used with the ACLS algorithm. As in
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Figure 7.2. Spectra before and after wavelet transform with the optimized parameters.
(A) Laboratory spectrum with air as background. (B) Reconstructed spectrum after
wavelet transform. The transform was performed based on the following optimized
parameters: wavelet function = db4, decomposition level = 6, reconstruction levels
= (1,6). (C) Air absorbance spectrum from bioreactor Run 1. (D) Reconstructed
spectrum after wavelet transform with function db10, 6 decomposition levels, and
reconstruction based on details from levels (1,2,5,6).
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(A) ACLS1, Calibration, SEC=0.08 g/L
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(B) ACLS1, Prediction, SEP=1.07/0.72g/L
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(C) ACLS2, Calibration, SEC=0.08 g/L
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(D) ACLS2, Prediction, SEP=0.55/0.47g/L
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(E) PLS, Calibration, SEC = 0.08 g/L
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Figure 7.3. Prediction results for glycerol in laboratory data with different algo-
rithms. The subfigure caption shows the corresponding algorithm, data set and error
value. ACLS1 is the augmented CLS algorithm. This algorithm used the three major
components (glycerol, methanol and sorbitol) and the spectrum of the background
matrix in assembling the Ka matrix. The ACLS2 method also involved a selection of
additional components in optimization from soy peptone, YNB, and yeast extract. In
the prediction plots, the blue signs denote the results for prediction set 1 and the red
symbols denote the second prediction set. Values of SEP are given for both prediction
sets.
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(A) ACLS1, Calibration, SEC = 0.54 g/L
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(B) ACLS1, Prediction, SEP=1.01/1.19g/L
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(C) ACLS1, Calibration, SEC = 0.28 g/L
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(D) ACLS2, Prediction, SEP=0.72/0.58g/L
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Figure 7.4. Correlation plots for methanol predictions with different algorithms for
laboratory data. The subfigure caption shows the corresponding algorithm, data set
and error value. ACLS1 is the augmented CLS algorithm. This algorithm used the
three major components (glycerol, methanol and sorbitol) and the spectrum of the
background matrix in assembling the Ka matrix. The ACLS2 method also involved a
selection of additional components in optimization from soy peptone, YNB, and yeast
extract. In the prediction plot, the blue symbols indicate the results for prediction
set 1 and the red symbols denote the second prediction set.
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Table 7.3. SEP values in g/L for non-cell data

(a) Glycerol

Data Set ACLS1 ACLS2 PLS

Calibration 0.08 0.08 0.08
Prediction 1 1.07 0.55 8.23
Prediction 2 0.72 0.47 17.5

(b) Methanol

Data Set ACLS1 ACLS2 PLS

Calibration 0.54 0.28 0.03
Prediction 1 1.01 0.72 0.40
Prediction 2 1.19 0.58 1.36

Chapter 6, no PLS models were attempted because of the lack of sufficient calibration

data and the dynamic nature of the bioreactor data both within and between runs.

The synthetic data used for monitoring the optimization of the ACLS model was

deemed not accurate enough for use in generating PLS models.

In using the ACLS method, the Ka of the glycerol model included pure-

component spectra of glycerol and the spectra (i.e., the first two principal compo-

nents) extracted from the background matrix during the first five hours of the run.

During the methanol feed, the glycerol was still possibly present. Thus, the Ka ma-

trix for methanol has both methanol and glycerol pure-component spectra, as well as

the two components derived from the background spectra taken during the five hours

before the methanol feed. As in Chapter 6, an updated Ka matrix was used for each

bioreactor run.

Figure 7.5 depicts the glycerol monitoring results for the five runs. In each

sub-figure, the blue plus signs represent the predicted concentrations based on the
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spectroscopic method. The red dots denote the values measured by the reference

method. The plot covers from the beginning of the runs until the glycerol feed ends.

Due to the suspected inaccuracy of the reference method at high concentrations, the

prediction results at the initial part of the run exhibit a shift from the reference values,

especially for Run 3.

In order to quantify the prediction results, the standard error value of the pre-

diction was calculated by matching the time when spectra and reference points were

collected. As estimated, it usually took 10 minutes for the solution to flow from the

fermentor to the spectrometer. Hence, a 10-minute lag is included in calculating the

SEP. Because the spectra collected during the first five hours were used in generating

the monitoring data and performing the optimization for glycerol, the data points

collected in this time slot were excluded in calculating the glycerol SEP values. The

SEP values are listed in Table 7.6.

The prediction results for methanol are presented analogously in Figure 7.6.

The plots show the results during the period after the methanol feed started until the

last reference point was collected. The calculation of the SEP values still considered

a 10-minute delay. The results of this calculation are shown in Table 7.6.

Observing the correlation plots and SEP values, an effective job was done

overall tracking the glycerol and methanol concentrations. Run 3 was problematic

for glycerol monitoring after hour 20, with the spectroscopic results being positively

offset from the reference values. In addition, some of the runs have an initial reference

glycerol concentration different from the assumed 14 g/L.
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Table 7.4. Wavelet analysis and regression model parameters used in glycerol predic-
tion for the bioreactor data

Run
Wavelet Transform Analysis CLS

Wavelet Decomposition Levels of Details Spectral Range
Function Level in Reconstruction (cm−1)

1 db10 6 (1,2,5,6) 4595 - 4280
2 db4 6 (2,3,5,6) 4640 - 4260
3 db6 4 (3,4) 4790 - 4365
4 db4 4 ( 3 ) 4650 - 4325
5 db8 6 (1,4,6) 4475 - 4335

Table 7.5. Wavelet analysis and regression model parameters used in methanol pre-
diction for the bioreactor data

Run
Wavelet Analysis CLS

Wavelet Decomposition Levels of Details Spectral Range
Function Level in Reconstruction (cm−1)

1 db6 6 (5,6) 4630 - 4315
2 db10 5 (5) 4750 - 4310
3 db4 6 (1,2,4,5,6) 4705 - 4320
4 db8 5 (2,4,5 ) 4660 - 4205
5 db8 6 (1,3,4,5,6) 4555 - 4320

With regard to the methanol results, except Run 1 and Run 4, the SEP values

were all lower than 1 g/L for the ACLS models. The larger SEP in Run 1 is caused

by the large variation from the reference value at around 44 hours. The result for

Run 4 is similar to the results obtained from Chapter 6. For this run, the predicted

results from the NIR measurements are biased, all lower than the reference values

until hour 58.
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Figure 7.5. Results for ACLS models in glycerol predictions for the bioreactor runs. In
each figure, the blue signs are the predicted concentrations from the NIR measurement
and the red dots indicate the reference concentrations.
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Figure 7.6. Results for ACLS models in methanol predictions for the bioreactor
runs. In each figure, the blue signs are the predicted concentrations from the NIR
measurement and the red dots indicate the reference concentrations
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Table 7.6. Prediction results for bioreactor monitoring

Run Glycerol SEP (g/L) Methanol SEP (g/L)

1 0.84 2.63
2 1.70 0.75
3 2.90 0.79
4 2.21 3.42
5 1.11 0.65

7.4.2 Comparison with Digital Filtering Methods

7.4.2.1 Results

In Chapter 6, we employed Chebyshev Type II digital filtering as the signal

processing tool. The results of non-cell laboratory data monitoring are shown in

Figure 6.2 and 6.3 and the SEP values are listed in Table 6.2. In this chapter, the

wavelet transform method replaced digital filtering. The comparison results with

regard to the SEP values are shown as bar plots in Figures 7.7A and 7.7B for the

laboratory data. Figures 7.7C and 7.7D remove the PLS results to provide easier

comparisons between the results obtained with the ACLS models.

Obviously, the PLS model could not provide a good prediction for glycerol two

weeks after the collection of the calibration data. Similarly, the methanol prediction is

not stable for the second set. Regarding the ACLS methods, the ACLS1 method with

digital filtering and the ACLS2 model with the wavelet transform provided comparable

prediction performance for both glycerol and methanol. The ACLS2 model with

wavelet preprocessing predicted slightly better in general.

To monitor the bioreactor process, we established a process monitoring pro-

tocol. The two signal processing tools were tested under the same protocol. The
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prediction results and the corresponding SEP values via the digital filtering method

are shown in Figure 6.4, Figure 6.5 and Table 6.5. Figures 7.8A and 7.8B show

the SEP values of these two methods for use in predicting glycerol and methanol

concentrations, respectively.

With the ACLS method, the two signal processing methods provided similar

results for the bioreactor data. Digital filtering worked better for Runs 2 and 4,

while the wavelet method predicted better in Runs 1, 3 and 5. With respect to the

methanol predictions, the two signal processing tools provided similar results for each

of the runs. The issue of systematic offset in Run 4 persisted. Generally speaking,

the wavelet method worked better than the digital filtering procedure except in Run

5.

7.4.2.2 Computational Time Considerations

In this chapter and Chapter 6, PSO was employed in selecting the best model

for prediction. To apply this method in a real application, the optimization time has to

be taken into consideration. The optimization process is divided into two steps: data

processing and optimization. Factors that could affect the calculation efficiency in the

data processing step include the spectral matrix size, time cost in signal processing

and regression. The optimization can be affected by the population size, the particle

dimensionality, the search space of the particles, and the total number of iterations

taken for the model to converge to the optima. Because the optimization has a

random component, different initial populations could induce different total numbers
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Figure 7.7. Compared prediction performances for laboratory data. Panels (A) and
(B) compare the SEP values for glycerol and methanol, respectively. They show
the results of the various combinations of signal processing and modeling algorithms.
Panels (C) and (D) compare the two signal processing methods with only the ACLS
methods. The ACLS2 method with wavelet processing provides the best overall pre-
diction results.
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Figure 7.8. Compared prediction performances with respect to the signal processing
methods for glycerol (A) and methanol (B) in the bioreactor data. The digital filtering
method is shown in blue bars and the wavelet transform results are in red. The wavelet
processing outperforms filtering in three of the five runs.



219

of iterations. To compare the respective computational times, each method was tested

with a fixed number of iterations (e.g., 50), without consideration of whether or not

the optimization converged. All calculations were based on a 200 × 150 spectral

matrix (i.e., 200 spectra containing 150 points) with 50 initial particles in the PSO

calculation.

Optimization of the wavelet/ACLS parameters was approximately 38 times

slower than the corresponding optimization of the digital filtering/ACLS parameters.

Two factors determine this difference. First, the digital filtering process is much

faster than the wavelet decomposition/reconstruction step. In addition, the wavelet

transform method has more parameters (8) to optimize than the digital filtering

approach (6). Overall, wavelet processing outperformed digital filtering in terms of

prediction performance. However, a fast computational platform would be required

to implement this method in practice.

7.4.3 Comparison Results for Methods without Signal Processing

Results obtained from this work are also compared with models built without

signal processing. Similar to Chapter 6, the ACLS method without signal processing

involved only a spectral range selection step. This was done by use of the calibration

spectra of the laboratory data and the synthetic monitoring spectra from the biore-

actor data. The spectral ranges were optimized by a grid search method. In the grid

search, the spectral range was selected over 4800 to 4200 cm−1. The spectral range

varied from 200 to 600 cm−1 with a 20 cm−1 increment. The moving step of the range
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was 5 cm−1. The Ka matrices are the same as those used with the signal processing

method. No component optimization was performed for the laboratory data. The

SEP values obtained without the use of signal processing are plotted in Figures 7.9

and 7.10.

The models built without signal processing could provide similar results to

those obtained with the wavelet method for only a few cases, notably methanol pre-

diction in the bioreactor process. However, without the wavelet transform, stable

predictions could not be obtained in general. The signal processing step is clearly

critical in helping to remove components from the data that cannot be adequately

represented in the Ka matrix used in obtaining the predicted concentrations.

7.5 Conclusions

In this chapter, we investigated further the spectroscopic process monitoring of

bioreactor runs of Pichia pastoris. By controlling the concentrations of the glycerol

and methanol feedstocks, cell growth and protein production can be enhanced. A

successful continuous monitoring protocol of methanol and glycerol concentrations

can enable automated control of the glycerol and methanol feeds. The dynamic

nature of the bioreactor process, both within a run and between runs, makes the

calibration component of the NIR measurement extremely challenging, however.

To help stabilize the calibration, the wavelet transform was employed as a

spectral preprocessing technique in this study. Optimization is still required to seek

the appropriate wavelet parameters to extract useful spectral features. With the
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Figure 7.9. SEP values for predictions without (ACLS in blue, PLS in cyan) and with
(ACLS in green and orange, PLS in red) the wavelet transform for the laboratory data.
The wavelet preprocessing step provides greater benefit to the ACLS models than the
PLS models. This suggests the wavelet processing is effective in removing components
from the spectra that have not been explicitly encoded in the Ka matrix.
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Figure 7.10. Bar plots of comparison SEP values for ACLS prediction results without
(blue) and with (red) the wavelet transform for the bioreactor data. The wavelet
preprocessing provides clear benefit for the glycerol models but does not improve the
prediction results for methanol.
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successful strategy of spectral synthesis of monitoring data introduced in Chapter 6,

ACLS models could be optimized separately for each prediction day in the laboratory

data or each bioreactor run. Similar to the digital filtering methodology employed in

Chapter 6, the wavelet transform was able to suppress components of the data that

could not be adequately encoded in the ACLS model. Models built without wavelet

preprocessing were not as stable in prediction.

Regarding the choice of preprocessing method, digital filtering (Chapter 6) and

the wavelet transform (Chapter 7) gave somewhat similar results, with the wavelet

preprocessing being slightly better overall. The increased computational time associ-

ated with wavelet processing vs. digital filtering and the larger search space required

for the wavelet parameters made the wavelet/ACLS models more computationally

intensive than those based on digital filtering/ACLS. This is a potentially important

consideration when choosing a computational platform for use with the method.

Further work could be performed to speed the optimization of the wavelet

parameters. For example, the initial population size is the primary factor to affect

the load of the calculation. The use of fewer particles could dramatically save time

during each iteration. This may result in the need for more iterations, however,

and could decrease the likelihood of finding the global optimum. Another strategy

would be decrease the matrix size of the spectra fed into the optimization. Possible

changes could include larger point spacing, fewer spectra in the background matrix,

or a smaller sample size in the monitoring spectra.
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CHAPTER 8
CONCLUSIONS AND FUTURE WORK

This dissertation focused on the investigation of quantitative analysis meth-

ods for use with infrared spectroscopy in two challenging applications: passive remote

sensing and process monitoring. Both of these applications involve dynamic measure-

ment environments with unstable spectral backgrounds. Furthermore, the collection

of large quantities of calibration data for use in building quantitative models is both

expensive and impractical. Through the development of methods in signal process-

ing, data synthesis, and optimization, workable quantitative models were obtained in

both applications.

In remote sensing, quantitative work is made difficult by the high cost and

effort required to produce known releases of chemicals for use in acquiring calibration

spectra. In addition, background spectral measurements are made difficult due to the

radiance changes caused by spectrometer movement or fluctuations in environmen-

tal conditions. This background variation invalidates the traditional computation of

analyte-specific absorbance by taking the ratio of analyte and background signals.

Such variation in background radiance also limits the quality of any collected calibra-

tion data, which is required to be representative of future data to which a computed

calibration model will be applied.

In Chapter 4, a simulation method was developed to avoid the required data

collection for use in building quantitative models. The synthetic strategy used a

radiance model to compute spectra after obtaining the key parameters that described
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the current experimental scenario. In this study, the temperatures of the analyte and

background were the primary factors affecting the signal intensity besides the analyte

concentration. This method avoided the collection of background spectra because the

calibration model was built solely on the basis of the synthetic single-beam spectra.

The only required data collection was one stable sample release for use in estimating

the sample temperature and the spectra of a blackbody source at two temperatures for

use in estimating two parameters related to the spectrometer. Without a requirement

for the collection of experimental data, the calibration data set could be generated

quickly through the synthesis procedure.

Results from both laboratory and field data showed that when the tempera-

ture difference between the analyte plume and the background was higher, predicted

concentrations were more accurate because of the higher absorption or emission in-

tensity. Overall, reasonable quantitative prediction performance was obtained in an

application in which the measured signals are inherently unstable. While the field

application described here employed a ground-based spectrometer looking upward at

the effluent from an emission stack, it is projected that the methodology could work

similarly in an implementation in which a released chemical plume is detected in a

downward-looking mode from above.

Besides the remote sensing study, data analysis strategies in NIR spectroscopy

were also implemented for use in process monitoring. The broad and overlapping

features found in NIR spectra make quantitative analysis challenging because spectral

selectivity is limited. This lack of selectivity necessitates the use of multivariate
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calibration models. Reliance on such models presents practical challenges in industrial

applications because of the need for the models to perform well without the need for

frequent or tedious recalibration. In the latter part of this thesis, the objective was

to develop calibration protocols for dynamic systems, using both a laboratory-based

flowing system and a real process bioreactor system. Signal processing techniques

were employed, facilitated by numerical optimization methods to search for parameter

combinations that optimized the calibration protocols.

In Chapter 5, a calibration method was developed that combined digital filter-

ing, partial-least squares (PLS) regression, and particle swarm optimization (PSO)

for use in continuous monitoring. Instead of a conventional FT-IR spectrometer,

an AOTF-based filter spectrometer was employed due to its compatibility with an

industrial environment. Both long- and short- term data sets were investigated.

In the data analysis, buffer and air spectra were compared for use as spectral

backgrounds. The air spectra were actual internal reference spectra collected in tan-

dem with each sample spectrum, while the buffer spectra were collected in a block

before the sample data collection started. The air background spectra provided more

stable predictions than the buffer spectra for the long-term study, while no significant

difference was observed for the short-term data.

Signal processing was investigated in this chapter to remove non-analyte spec-

tral information. The Chebyshev Type II bandpass filter was applied in the digital

filtering preprocessing. A study using principal component analysis (PCA) illustrated

the effectiveness of the filter in removing time-based variation from the spectra. In
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the quantitative analysis step, an F -test was used to avoid overfitting the PLS model,

a common problem with this modeling method. A key component of the method-

ology was the use of PSO to combine the optimization of the digital filter and PLS

modeling parameters.

An extension of this work was the use of a model updating method to improve

calibration stability in the long-term study. By adding buffer spectra into the origi-

nal calibration data, a new calibration could be built through the same optimization

process on each prediction day. Improvement in prediction performance was observed

in lower bias between the reference and predicted concentration values. Future re-

search aspects of this work might include the study of a different digital filter design

or preprocessing method. In this study, there were four components in each sample

besides the background buffer. A more complicated solution system would be helpful

to test the robustness and stability of this data analysis method.

In Chapters 6 and 7, the research moved forward to a real process bioreactor

system. In the monitoring of the bioreactor process, only limited reference points

could be obtained, leading to difficulties in building PLS calibration models. To

address this limitation, the augmented classical least-squares (ACLS) method was

explored to build calibrations. Using the CLS method requires knowledge of the

constituents of the chemical system under study and either their corresponding pure-

component spectra or representative composite spectra of several components. This

method enables the construction of a calibration model without a large collection of

calibration spectra and associated reference measurements.
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In these chapters, signal processing methods were still implemented. In addi-

tion to the digital filtering method, wavelet transforms were also investigated. The

purpose of the preprocessing step was to remove unnecessary features from the col-

lected spectra before their submission to the calibration model. In this way, it was

hoped that concentration estimates would be more stable and less susceptible to

changes in the spectral background associated with the dynamic nature of the biore-

actor process. Similar to digital filtering, wavelet preprocessing also has different

parameter combinations that affect its performance. These include the family and

order of the wavelet function, number of levels of decomposition, and how the recon-

struction was performed. Optimization with PSO was employed to identify the best

preprocessing parameters.

Laboratory data that contained the same chemical constituents as the actual

bioreactor runs were studied with the ACLS method in order to characterize its

performance and evaluate the optimization of the two signal processing methods. The

availability of a set of calibration spectra and reference concentrations also allowed

the PLS method to be used.

There were four combinations of preprocessing (digital filtering and wavelet

processing) and regression (PLS and ACLS). For long-term predictions, the PLS

model was not stable with either preprocessing technique, while the ACLS model still

predicted well two weeks after the calibration was optimized. The key difference in

the two methods was that the ACLS model could be updated with pure-component

and background spectra collected on the prediction day.
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For the bioreactor data, however, the limited reference points were not suf-

ficient to guide the optimization. In this case, a synthetic method was designed

to create monitoring data for use in guiding the optimization. By combining pure-

component spectra and background spectra collected during a time period in which

little change in analyte concentration was expected, a set of monitoring spectra was

generated. After optimization, both signal processing methods provided similar re-

sults in the individual runs, with wavelet processing slightly outperforming digital

filtering. A good consistency with the known reference was obtained in general, al-

though a bias in the predicted concentration values was observed during several time

periods.

To improve the methodology in the future, testing must be performed with

more bioreactor runs for which reliable reference data are available. This will help

to provide a better characterization of the stability and robustness of the calibration

procedures. In addition, a model updating method needs to be investigated.

As currently implemented, the ACLS calibration model is not flexible in the

composition of the components included. As the bioreactor run proceeds, if a new

component is introduced (e.g., the addition of a surfactant to reduce foaming), the

calibration needs to incorporate that component into the model. This requires an

approach in which a pool of possible components is available and a fitting procedure

is used to select which to include in the model. It would be desirable to have this

procedure be automated rather than requiring intervention by the user.

Given that it is desired to collect very few, if any, reference samples for offline
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analysis, spectral diagnostics must be available to identify when the model is under-

performing. Examination of the spectral residuals obtained from the fit of the ACLS

model to the input spectrum may be a key to this diagnostic.

Computational efficiency is also a concern in the practical implementation of

the methodology. For example, while the wavelet preprocessing showed some im-

provement over digital filtering, optimization of the wavelet parameters was very

time-consuming. To use the wavelet method practically, several modifications of the

optimization can be done: (1) reduce the initial particle size; (2) shrink the search

space; and (3) decrease the size of the spectral matrix. Further work should include

a study to attempt to streamline the optimization of the wavelet parameters.

In these chapters, the bioreactor process was monitored with a real-time re-

sponse. Because of the advantages of the spectroscopic method, the developed cali-

bration protocols could be applied in other fields, for example, during a batch process

in a pharmaceutical or manufacturing application. The spectral collection can be

automated and can greatly reduce the labor required to perform monitoring in a long

continuous process. A control system driven by the NIR method could be a key ele-

ment in helping to optimize and maintain quality control in any number of industrial

processes.

Finally, it should be emphasized that the applications addressed in this dis-

sertation were extremely challenging. Obtaining good quantitative performance in

passive remote sensing and bioreactor monitoring is nontrivial. There is little or no

automated quantitative analysis methodology currently available in either field. The
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methodology developed in this dissertation provides a significant advance.
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